Multidimensional Linear Logistic Models for Change View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

Gerhard H. Fischer , Elisabeth Seliger

ABSTRACT

The chapter presents a family of multidimensional logistic models for change, which are based on the Rasch model (RM) and on the linear logistic test model (LLTM; see Fischer, this volume), but unlike these models do not require unidimensionality of the items. As will be seen, to abandon the unidimensionality requirement becomes possible under the assumption that the same items are presented to the testees on two or more occasions. This relaxation of the usual unidimensionality axiom of IRT is of great advantage especially in typical research problems of educational, applied, or clinical psychology, where items or symptoms often are heterogeneous. [See Stout (1987, 1990) for a quite different approach to weakening the strict unidimensionality assumption.] Consider, for example, the problem of monitoring cognitive growth in children: A set of items appropriate for assessing intellectual development will necessarily contain items that address a number of different intelligence factors. If we knew what factors there are, and which of the items measure what factor, we might construct several unidimensional scales. This is unrealistic, however, because the factor structures in males and females, above- and below-average children, etc., generally differ, so that there is little hope of arriving at sufficiently unidimensional scales applicable to all children. Therefore, a model of change that makes no assumption about the latent dimensionality of the items is a very valuable tool for applied research. More... »

PAGES

323-346

Book

TITLE

Handbook of Modern Item Response Theory

ISBN

978-1-4419-2849-8
978-1-4757-2691-6

From Grant

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4757-2691-6_19

DOI

http://dx.doi.org/10.1007/978-1-4757-2691-6_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007288348


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Fischer", 
        "givenName": "Gerhard H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Seliger", 
        "givenName": "Elisabeth", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02294496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000807337", 
          "https://doi.org/10.1007/bf02294496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000807337", 
          "https://doi.org/10.1007/bf02294496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02314674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007168150", 
          "https://doi.org/10.1007/bf02314674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bimj.4710220405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011677077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013936608", 
          "https://doi.org/10.1007/bf02294001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013936608", 
          "https://doi.org/10.1007/bf02294001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02293814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014289170", 
          "https://doi.org/10.1007/bf02293814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026764572", 
          "https://doi.org/10.1007/bf02294821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026764572", 
          "https://doi.org/10.1007/bf02294821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4308-3_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037370308", 
          "https://doi.org/10.1007/978-1-4612-4308-3_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4308-3_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037370308", 
          "https://doi.org/10.1007/978-1-4612-4308-3_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02295182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044339878", 
          "https://doi.org/10.1007/bf02295182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02295182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044339878", 
          "https://doi.org/10.1007/bf02295182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048687949", 
          "https://doi.org/10.1007/bf02294820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048687949", 
          "https://doi.org/10.1007/bf02294820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02295289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048716550", 
          "https://doi.org/10.1007/bf02295289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02295289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048716550", 
          "https://doi.org/10.1007/bf02295289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6918(72)90005-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050766555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6918(72)90005-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050766555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02296399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053511004", 
          "https://doi.org/10.1007/bf02296399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02296399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053511004", 
          "https://doi.org/10.1007/bf02296399"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "The chapter presents a family of multidimensional logistic models for change, which are based on the Rasch model (RM) and on the linear logistic test model (LLTM; see Fischer, this volume), but unlike these models do not require unidimensionality of the items. As will be seen, to abandon the unidimensionality requirement becomes possible under the assumption that the same items are presented to the testees on two or more occasions. This relaxation of the usual unidimensionality axiom of IRT is of great advantage especially in typical research problems of educational, applied, or clinical psychology, where items or symptoms often are heterogeneous. [See Stout (1987, 1990) for a quite different approach to weakening the strict unidimensionality assumption.] Consider, for example, the problem of monitoring cognitive growth in children: A set of items appropriate for assessing intellectual development will necessarily contain items that address a number of different intelligence factors. If we knew what factors there are, and which of the items measure what factor, we might construct several unidimensional scales. This is unrealistic, however, because the factor structures in males and females, above- and below-average children, etc., generally differ, so that there is little hope of arriving at sufficiently unidimensional scales applicable to all children. Therefore, a model of change that makes no assumption about the latent dimensionality of the items is a very valuable tool for applied research.", 
    "editor": [
      {
        "familyName": "van der Linden", 
        "givenName": "Wim J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hambleton", 
        "givenName": "Ronald K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4757-2691-6_19", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6189726", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": {
      "isbn": [
        "978-1-4419-2849-8", 
        "978-1-4757-2691-6"
      ], 
      "name": "Handbook of Modern Item Response Theory", 
      "type": "Book"
    }, 
    "name": "Multidimensional Linear Logistic Models for Change", 
    "pagination": "323-346", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4757-2691-6_19"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "22b74da7d1bd21e8782746fd3266de12da5ad15ebeb43d9a146f58c820890149"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007288348"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4757-2691-6_19", 
      "https://app.dimensions.ai/details/publication/pub.1007288348"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000247.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4757-2691-6_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-2691-6_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-2691-6_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-2691-6_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-2691-6_19'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4757-2691-6_19 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N5fb1f0f677c047beacaf7292f99ac1d8
4 schema:citation sg:pub.10.1007/978-1-4612-4308-3_19
5 sg:pub.10.1007/bf02293814
6 sg:pub.10.1007/bf02294001
7 sg:pub.10.1007/bf02294496
8 sg:pub.10.1007/bf02294820
9 sg:pub.10.1007/bf02294821
10 sg:pub.10.1007/bf02295182
11 sg:pub.10.1007/bf02295289
12 sg:pub.10.1007/bf02296399
13 sg:pub.10.1007/bf02314674
14 https://doi.org/10.1002/bimj.4710220405
15 https://doi.org/10.1016/0001-6918(72)90005-4
16 schema:datePublished 1997
17 schema:datePublishedReg 1997-01-01
18 schema:description The chapter presents a family of multidimensional logistic models for change, which are based on the Rasch model (RM) and on the linear logistic test model (LLTM; see Fischer, this volume), but unlike these models do not require unidimensionality of the items. As will be seen, to abandon the unidimensionality requirement becomes possible under the assumption that the same items are presented to the testees on two or more occasions. This relaxation of the usual unidimensionality axiom of IRT is of great advantage especially in typical research problems of educational, applied, or clinical psychology, where items or symptoms often are heterogeneous. [See Stout (1987, 1990) for a quite different approach to weakening the strict unidimensionality assumption.] Consider, for example, the problem of monitoring cognitive growth in children: A set of items appropriate for assessing intellectual development will necessarily contain items that address a number of different intelligence factors. If we knew what factors there are, and which of the items measure what factor, we might construct several unidimensional scales. This is unrealistic, however, because the factor structures in males and females, above- and below-average children, etc., generally differ, so that there is little hope of arriving at sufficiently unidimensional scales applicable to all children. Therefore, a model of change that makes no assumption about the latent dimensionality of the items is a very valuable tool for applied research.
19 schema:editor N0b68e13c3f724ef49821c326c66ee0b3
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N4ddc9d535f084df1b1bc3bf2c55f205d
24 schema:name Multidimensional Linear Logistic Models for Change
25 schema:pagination 323-346
26 schema:productId N31d4b5462f3c42dc8d258a3154ffed3a
27 Nba1d0e9883c14927a444ff2b3bf2bc10
28 Nccc36bd7852b43b9a74de2a2f8eb266a
29 schema:publisher Na20ecd212cea408a90b2715d71022c68
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007288348
31 https://doi.org/10.1007/978-1-4757-2691-6_19
32 schema:sdDatePublished 2019-04-15T21:00
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nda4ac09de70c44d591ce23d11d8f2424
35 schema:url http://link.springer.com/10.1007/978-1-4757-2691-6_19
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N0b68e13c3f724ef49821c326c66ee0b3 rdf:first Nf8d2d50b9c514a75afc5bba7d562e6fa
40 rdf:rest Naad61607533544c099fab7f0aa4b6fa8
41 N31d4b5462f3c42dc8d258a3154ffed3a schema:name dimensions_id
42 schema:value pub.1007288348
43 rdf:type schema:PropertyValue
44 N3db3770a1f9b4139a199a9084a001747 schema:familyName Seliger
45 schema:givenName Elisabeth
46 rdf:type schema:Person
47 N4ddc9d535f084df1b1bc3bf2c55f205d schema:isbn 978-1-4419-2849-8
48 978-1-4757-2691-6
49 schema:name Handbook of Modern Item Response Theory
50 rdf:type schema:Book
51 N5fb1f0f677c047beacaf7292f99ac1d8 rdf:first N8f67737c07e44166b863f3f418a64862
52 rdf:rest N60c9997e8e904ae3904b1033db577d80
53 N60c9997e8e904ae3904b1033db577d80 rdf:first N3db3770a1f9b4139a199a9084a001747
54 rdf:rest rdf:nil
55 N8f67737c07e44166b863f3f418a64862 schema:familyName Fischer
56 schema:givenName Gerhard H.
57 rdf:type schema:Person
58 Na20ecd212cea408a90b2715d71022c68 schema:location New York, NY
59 schema:name Springer New York
60 rdf:type schema:Organisation
61 Naad61607533544c099fab7f0aa4b6fa8 rdf:first Ne2e438ec05bd4db8af29769eb513bc48
62 rdf:rest rdf:nil
63 Nba1d0e9883c14927a444ff2b3bf2bc10 schema:name readcube_id
64 schema:value 22b74da7d1bd21e8782746fd3266de12da5ad15ebeb43d9a146f58c820890149
65 rdf:type schema:PropertyValue
66 Nccc36bd7852b43b9a74de2a2f8eb266a schema:name doi
67 schema:value 10.1007/978-1-4757-2691-6_19
68 rdf:type schema:PropertyValue
69 Nda4ac09de70c44d591ce23d11d8f2424 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Ne2e438ec05bd4db8af29769eb513bc48 schema:familyName Hambleton
72 schema:givenName Ronald K.
73 rdf:type schema:Person
74 Nf8d2d50b9c514a75afc5bba7d562e6fa schema:familyName van der Linden
75 schema:givenName Wim J.
76 rdf:type schema:Person
77 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
78 schema:name Psychology and Cognitive Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
81 schema:name Psychology
82 rdf:type schema:DefinedTerm
83 sg:grant.6189726 http://pending.schema.org/fundedItem sg:pub.10.1007/978-1-4757-2691-6_19
84 rdf:type schema:MonetaryGrant
85 sg:pub.10.1007/978-1-4612-4308-3_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037370308
86 https://doi.org/10.1007/978-1-4612-4308-3_19
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf02293814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014289170
89 https://doi.org/10.1007/bf02293814
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf02294001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013936608
92 https://doi.org/10.1007/bf02294001
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf02294496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000807337
95 https://doi.org/10.1007/bf02294496
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf02294820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048687949
98 https://doi.org/10.1007/bf02294820
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf02294821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026764572
101 https://doi.org/10.1007/bf02294821
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf02295182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044339878
104 https://doi.org/10.1007/bf02295182
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02295289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048716550
107 https://doi.org/10.1007/bf02295289
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02296399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053511004
110 https://doi.org/10.1007/bf02296399
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf02314674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007168150
113 https://doi.org/10.1007/bf02314674
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/bimj.4710220405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011677077
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0001-6918(72)90005-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050766555
118 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...