Icosahedral Incommensurate Crystals View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1991

AUTHORS

Per Bak

ABSTRACT

One of the basic facts of condensed matter physics is that the symmetry of 3d crystals can be described in terms of space groups composed of Bravais lattices of 3d translational symmetries and point groups of rotation and reflection symmetries. Only 2-fold, 3-fold, 4-fold and 6-fold rotation symmetries are allowed. In a striking experiment on an Mn-Al alloy, however, Shechtman et al.1 have observed an electron diffraction pattern with a 5-fold symmetry axis, and an overall icosahedral symmetry (Fig. 1). How can this be possible? The diffraction spots are quite sharp, so there is long range positional ordering, but there can not be translational invariance in view of the considerations above. The spectrum has a “scaling” structure: if the pattern is magnified by a factor G (the golden mean) the positions of peaks remain fixed. More... »

PAGES

197-205

Book

TITLE

Scaling Phenomena in Disordered Systems

ISBN

978-1-4757-1404-3
978-1-4757-1402-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4757-1402-9_17

DOI

http://dx.doi.org/10.1007/978-1-4757-1402-9_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029934199


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Physics Department, Brookhaven National Laboratory, 11973, Upton, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.202665.5", 
          "name": [
            "Physics Department, Brookhaven National Laboratory, 11973, Upton, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bak", 
        "givenName": "Per", 
        "id": "sg:person.010472724377.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472724377.34"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1991", 
    "datePublishedReg": "1991-01-01", 
    "description": "One of the basic facts of condensed matter physics is that the symmetry of 3d crystals can be described in terms of space groups composed of Bravais lattices of 3d translational symmetries and point groups of rotation and reflection symmetries. Only 2-fold, 3-fold, 4-fold and 6-fold rotation symmetries are allowed. In a striking experiment on an Mn-Al alloy, however, Shechtman et al.1 have observed an electron diffraction pattern with a 5-fold symmetry axis, and an overall icosahedral symmetry (Fig. 1). How can this be possible? The diffraction spots are quite sharp, so there is long range positional ordering, but there can not be translational invariance in view of the considerations above. The spectrum has a \u201cscaling\u201d structure: if the pattern is magnified by a factor G (the golden mean) the positions of peaks remain fixed.", 
    "editor": [
      {
        "familyName": "Pynn", 
        "givenName": "Roger", 
        "type": "Person"
      }, 
      {
        "familyName": "Skjeltorp", 
        "givenName": "Arne", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4757-1402-9_17", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4757-1404-3", 
        "978-1-4757-1402-9"
      ], 
      "name": "Scaling Phenomena in Disordered Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "group", 
      "striking experiments", 
      "patterns", 
      "axis", 
      "spots", 
      "consideration", 
      "factor G", 
      "basic facts", 
      "fact", 
      "terms", 
      "rotation", 
      "experiments", 
      "et al", 
      "view", 
      "position", 
      "peak", 
      "al", 
      "icosahedral symmetry", 
      "spectra", 
      "structure", 
      "symmetry", 
      "point group", 
      "positions of peaks", 
      "matter physics", 
      "physics", 
      "crystals", 
      "space group", 
      "Bravais lattice", 
      "lattice", 
      "translational symmetry", 
      "reflection symmetry", 
      "rotation symmetry", 
      "alloy", 
      "Shechtman et al", 
      "electron diffraction patterns", 
      "diffraction patterns", 
      "symmetry axis", 
      "overall icosahedral symmetry", 
      "diffraction spots", 
      "positional ordering", 
      "ordering", 
      "translational invariance", 
      "invariance", 
      "incommensurate crystals", 
      "Mn-Al alloys", 
      "long range positional ordering", 
      "range positional ordering", 
      "Icosahedral Incommensurate Crystals"
    ], 
    "name": "Icosahedral Incommensurate Crystals", 
    "pagination": "197-205", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029934199"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4757-1402-9_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4757-1402-9_17", 
      "https://app.dimensions.ai/details/publication/pub.1029934199"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_66.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4757-1402-9_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-1402-9_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-1402-9_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-1402-9_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-1402-9_17'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      23 PREDICATES      73 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4757-1402-9_17 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N26f89248b6604a128dd6eb37eba521a3
4 schema:datePublished 1991
5 schema:datePublishedReg 1991-01-01
6 schema:description One of the basic facts of condensed matter physics is that the symmetry of 3d crystals can be described in terms of space groups composed of Bravais lattices of 3d translational symmetries and point groups of rotation and reflection symmetries. Only 2-fold, 3-fold, 4-fold and 6-fold rotation symmetries are allowed. In a striking experiment on an Mn-Al alloy, however, Shechtman et al.1 have observed an electron diffraction pattern with a 5-fold symmetry axis, and an overall icosahedral symmetry (Fig. 1). How can this be possible? The diffraction spots are quite sharp, so there is long range positional ordering, but there can not be translational invariance in view of the considerations above. The spectrum has a “scaling” structure: if the pattern is magnified by a factor G (the golden mean) the positions of peaks remain fixed.
7 schema:editor N2afeeb63595b4787aa9d8278f3f67d44
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N8ad7922ddcaa47d393a727decce93912
12 schema:keywords Bravais lattice
13 Icosahedral Incommensurate Crystals
14 Mn-Al alloys
15 Shechtman et al
16 al
17 alloy
18 axis
19 basic facts
20 consideration
21 crystals
22 diffraction patterns
23 diffraction spots
24 electron diffraction patterns
25 et al
26 experiments
27 fact
28 factor G
29 group
30 icosahedral symmetry
31 incommensurate crystals
32 invariance
33 lattice
34 long range positional ordering
35 matter physics
36 ordering
37 overall icosahedral symmetry
38 patterns
39 peak
40 physics
41 point group
42 position
43 positional ordering
44 positions of peaks
45 range positional ordering
46 reflection symmetry
47 rotation
48 rotation symmetry
49 space group
50 spectra
51 spots
52 striking experiments
53 structure
54 symmetry
55 symmetry axis
56 terms
57 translational invariance
58 translational symmetry
59 view
60 schema:name Icosahedral Incommensurate Crystals
61 schema:pagination 197-205
62 schema:productId N9d09e86db02f43c6a71de3fd2106ffd0
63 Ne0441f360f554e8eb44bf65a84a40bf7
64 schema:publisher Nbb4739170acf4e6a84a845032e896a8d
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029934199
66 https://doi.org/10.1007/978-1-4757-1402-9_17
67 schema:sdDatePublished 2021-12-01T20:12
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N6456c99dc8744c3b8c4bfd0aca8c2230
70 schema:url https://doi.org/10.1007/978-1-4757-1402-9_17
71 sgo:license sg:explorer/license/
72 sgo:sdDataset chapters
73 rdf:type schema:Chapter
74 N25d9fad2af0640bb82e8f8f8cf334088 rdf:first Na2eaa88a9d3e4c00be6992a1b0468d44
75 rdf:rest rdf:nil
76 N26f89248b6604a128dd6eb37eba521a3 rdf:first sg:person.010472724377.34
77 rdf:rest rdf:nil
78 N2afeeb63595b4787aa9d8278f3f67d44 rdf:first Ne7b14827274c4d6b82d0213be40c860e
79 rdf:rest N25d9fad2af0640bb82e8f8f8cf334088
80 N6456c99dc8744c3b8c4bfd0aca8c2230 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N8ad7922ddcaa47d393a727decce93912 schema:isbn 978-1-4757-1402-9
83 978-1-4757-1404-3
84 schema:name Scaling Phenomena in Disordered Systems
85 rdf:type schema:Book
86 N9d09e86db02f43c6a71de3fd2106ffd0 schema:name dimensions_id
87 schema:value pub.1029934199
88 rdf:type schema:PropertyValue
89 Na2eaa88a9d3e4c00be6992a1b0468d44 schema:familyName Skjeltorp
90 schema:givenName Arne
91 rdf:type schema:Person
92 Nbb4739170acf4e6a84a845032e896a8d schema:name Springer Nature
93 rdf:type schema:Organisation
94 Ne0441f360f554e8eb44bf65a84a40bf7 schema:name doi
95 schema:value 10.1007/978-1-4757-1402-9_17
96 rdf:type schema:PropertyValue
97 Ne7b14827274c4d6b82d0213be40c860e schema:familyName Pynn
98 schema:givenName Roger
99 rdf:type schema:Person
100 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
101 schema:name Mathematical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
104 schema:name Pure Mathematics
105 rdf:type schema:DefinedTerm
106 sg:person.010472724377.34 schema:affiliation grid-institutes:grid.202665.5
107 schema:familyName Bak
108 schema:givenName Per
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010472724377.34
110 rdf:type schema:Person
111 grid-institutes:grid.202665.5 schema:alternateName Physics Department, Brookhaven National Laboratory, 11973, Upton, New York, USA
112 schema:name Physics Department, Brookhaven National Laboratory, 11973, Upton, New York, USA
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...