The Equations of Motion Method: An Approach to the Dynamical Properties of Atoms and Molecules View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1977

AUTHORS

Clyde W. McCurdy , Thomas N. Rescigno , Danny L. Yeager , Vincent McKoy

ABSTRACT

This chapter is concerned with the equations of motion method as a many-body approach to the dynamical properties of atoms and molecules. In a wide range of spectroscopic experiments one is primarily concerned with just dynamical properties. These dynamical properties include excitation energies and oscillator strengths in optical spectroscopy, the dynamic or frequency-dependent polarizability in light scattering studies, photoionization cross sections, and elastic and inelastic electron scattering cross sections. These experiments probe the response of an atom or molecule to some external perturbation. If one is concerned with these properties one should develop a formalism which aims directly at these properties. Of course this idea is not novel. For example, one might try to calculate the appropriate Green’s functions whose poles, and residues at these poles, are directly the excitation energies and transitions densities, respectively. One could also attempt to solve the time-dependent Schrödinger equation directly, e.g., in the time-dependent Hartree—Fock approximation. The approach to these dynamical properties of atoms and molecules which we will discuss is based on the equations of motion formalism as suggested by Rowe.(1) This is a very practical formalism based on the equations of motion for excitation operators defined as operators that convert one stationary state of a system into another state. More... »

PAGES

339-386

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4757-0887-5_9

DOI

http://dx.doi.org/10.1007/978-1-4757-0887-5_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029821098


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCurdy", 
        "givenName": "Clyde W.", 
        "id": "sg:person.014623274773.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014623274773.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rescigno", 
        "givenName": "Thomas N.", 
        "id": "sg:person.012615723644.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012615723644.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yeager", 
        "givenName": "Danny L.", 
        "id": "sg:person.011537340317.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537340317.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McKoy", 
        "givenName": "Vincent", 
        "id": "sg:person.014763021353.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763021353.63"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1977", 
    "datePublishedReg": "1977-01-01", 
    "description": "This chapter is concerned with the equations of motion method as a many-body approach to the dynamical properties of atoms and molecules. In a wide range of spectroscopic experiments one is primarily concerned with just dynamical properties. These dynamical properties include excitation energies and oscillator strengths in optical spectroscopy, the dynamic or frequency-dependent polarizability in light scattering studies, photoionization cross sections, and elastic and inelastic electron scattering cross sections. These experiments probe the response of an atom or molecule to some external perturbation. If one is concerned with these properties one should develop a formalism which aims directly at these properties. Of course this idea is not novel. For example, one might try to calculate the appropriate Green\u2019s functions whose poles, and residues at these poles, are directly the excitation energies and transitions densities, respectively. One could also attempt to solve the time-dependent Schr\u00f6dinger equation directly, e.g., in the time-dependent Hartree\u2014Fock approximation. The approach to these dynamical properties of atoms and molecules which we will discuss is based on the equations of motion formalism as suggested by Rowe.(1) This is a very practical formalism based on the equations of motion for excitation operators defined as operators that convert one stationary state of a system into another state.", 
    "editor": [
      {
        "familyName": "Schaefer", 
        "givenName": "Henry F.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4757-0887-5_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4757-0889-9", 
        "978-1-4757-0887-5"
      ], 
      "name": "Methods of Electronic Structure Theory", 
      "type": "Book"
    }, 
    "keywords": [
      "excitation energy", 
      "dynamical properties", 
      "cross sections", 
      "time-dependent Schr\u00f6dinger equation", 
      "time-dependent Hartree-Fock approximation", 
      "photoionization cross section", 
      "Hartree-Fock approximation", 
      "inelastic electron", 
      "optical spectroscopy", 
      "frequency-dependent polarizabilities", 
      "oscillator strengths", 
      "motion method", 
      "body approach", 
      "Schr\u00f6dinger equation", 
      "motion formalism", 
      "atoms", 
      "transition density", 
      "excitation operators", 
      "stationary state", 
      "external perturbations", 
      "formalism", 
      "practical formalism", 
      "energy", 
      "Green's function", 
      "equations of motion", 
      "electrons", 
      "polarizability", 
      "appropriate Green's function", 
      "spectroscopy", 
      "properties", 
      "molecules", 
      "state", 
      "sections", 
      "equations", 
      "approximation", 
      "density", 
      "experiment one", 
      "wide range", 
      "motion", 
      "perturbations", 
      "pole", 
      "range", 
      "experiments", 
      "function", 
      "method", 
      "strength", 
      "operators", 
      "system", 
      "one", 
      "example", 
      "approach", 
      "chapter", 
      "idea", 
      "Rowe", 
      "study", 
      "response", 
      "spectroscopic experiments one"
    ], 
    "name": "The Equations of Motion Method: An Approach to the Dynamical Properties of Atoms and Molecules", 
    "pagination": "339-386", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029821098"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4757-0887-5_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4757-0887-5_9", 
      "https://app.dimensions.ai/details/publication/pub.1029821098"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_16.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4757-0887-5_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-0887-5_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-0887-5_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-0887-5_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4757-0887-5_9'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      23 PREDICATES      82 URIs      75 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4757-0887-5_9 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nc0cc61c6e7ea4acba0051ba121c9b2fe
4 schema:datePublished 1977
5 schema:datePublishedReg 1977-01-01
6 schema:description This chapter is concerned with the equations of motion method as a many-body approach to the dynamical properties of atoms and molecules. In a wide range of spectroscopic experiments one is primarily concerned with just dynamical properties. These dynamical properties include excitation energies and oscillator strengths in optical spectroscopy, the dynamic or frequency-dependent polarizability in light scattering studies, photoionization cross sections, and elastic and inelastic electron scattering cross sections. These experiments probe the response of an atom or molecule to some external perturbation. If one is concerned with these properties one should develop a formalism which aims directly at these properties. Of course this idea is not novel. For example, one might try to calculate the appropriate Green’s functions whose poles, and residues at these poles, are directly the excitation energies and transitions densities, respectively. One could also attempt to solve the time-dependent Schrödinger equation directly, e.g., in the time-dependent Hartree—Fock approximation. The approach to these dynamical properties of atoms and molecules which we will discuss is based on the equations of motion formalism as suggested by Rowe.(1) This is a very practical formalism based on the equations of motion for excitation operators defined as operators that convert one stationary state of a system into another state.
7 schema:editor N2c10c4ad89a04234b16fa65e935df448
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N620026137ad3481cb672a58429a20c58
12 schema:keywords Green's function
13 Hartree-Fock approximation
14 Rowe
15 Schrödinger equation
16 approach
17 appropriate Green's function
18 approximation
19 atoms
20 body approach
21 chapter
22 cross sections
23 density
24 dynamical properties
25 electrons
26 energy
27 equations
28 equations of motion
29 example
30 excitation energy
31 excitation operators
32 experiment one
33 experiments
34 external perturbations
35 formalism
36 frequency-dependent polarizabilities
37 function
38 idea
39 inelastic electron
40 method
41 molecules
42 motion
43 motion formalism
44 motion method
45 one
46 operators
47 optical spectroscopy
48 oscillator strengths
49 perturbations
50 photoionization cross section
51 polarizability
52 pole
53 practical formalism
54 properties
55 range
56 response
57 sections
58 spectroscopic experiments one
59 spectroscopy
60 state
61 stationary state
62 strength
63 study
64 system
65 time-dependent Hartree-Fock approximation
66 time-dependent Schrödinger equation
67 transition density
68 wide range
69 schema:name The Equations of Motion Method: An Approach to the Dynamical Properties of Atoms and Molecules
70 schema:pagination 339-386
71 schema:productId N04d090ac9555457c953a05a1a5db53cf
72 N78a5fcfbe6df421c922a8c9598bf8003
73 schema:publisher N767dcd09fa544fecae8c64338d12c05e
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029821098
75 https://doi.org/10.1007/978-1-4757-0887-5_9
76 schema:sdDatePublished 2022-01-01T19:09
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Nb2d13af76e7245ba81296b9702ad9b36
79 schema:url https://doi.org/10.1007/978-1-4757-0887-5_9
80 sgo:license sg:explorer/license/
81 sgo:sdDataset chapters
82 rdf:type schema:Chapter
83 N04d090ac9555457c953a05a1a5db53cf schema:name doi
84 schema:value 10.1007/978-1-4757-0887-5_9
85 rdf:type schema:PropertyValue
86 N2c10c4ad89a04234b16fa65e935df448 rdf:first Nf78a45b95aa14b289f7b779200a467ed
87 rdf:rest rdf:nil
88 N620026137ad3481cb672a58429a20c58 schema:isbn 978-1-4757-0887-5
89 978-1-4757-0889-9
90 schema:name Methods of Electronic Structure Theory
91 rdf:type schema:Book
92 N7168de00120e442c99e2c92f69cd6be5 rdf:first sg:person.012615723644.19
93 rdf:rest Ndc53914bedb24cef989f00b217e51d99
94 N767dcd09fa544fecae8c64338d12c05e schema:name Springer Nature
95 rdf:type schema:Organisation
96 N78a5fcfbe6df421c922a8c9598bf8003 schema:name dimensions_id
97 schema:value pub.1029821098
98 rdf:type schema:PropertyValue
99 Na22dd023450a457a83a39b3d54e22d02 rdf:first sg:person.014763021353.63
100 rdf:rest rdf:nil
101 Nb2d13af76e7245ba81296b9702ad9b36 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nc0cc61c6e7ea4acba0051ba121c9b2fe rdf:first sg:person.014623274773.10
104 rdf:rest N7168de00120e442c99e2c92f69cd6be5
105 Ndc53914bedb24cef989f00b217e51d99 rdf:first sg:person.011537340317.12
106 rdf:rest Na22dd023450a457a83a39b3d54e22d02
107 Nf78a45b95aa14b289f7b779200a467ed schema:familyName Schaefer
108 schema:givenName Henry F.
109 rdf:type schema:Person
110 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
111 schema:name Physical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
114 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
115 rdf:type schema:DefinedTerm
116 sg:person.011537340317.12 schema:affiliation grid-institutes:grid.20861.3d
117 schema:familyName Yeager
118 schema:givenName Danny L.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011537340317.12
120 rdf:type schema:Person
121 sg:person.012615723644.19 schema:affiliation grid-institutes:grid.20861.3d
122 schema:familyName Rescigno
123 schema:givenName Thomas N.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012615723644.19
125 rdf:type schema:Person
126 sg:person.014623274773.10 schema:affiliation grid-institutes:grid.20861.3d
127 schema:familyName McCurdy
128 schema:givenName Clyde W.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014623274773.10
130 rdf:type schema:Person
131 sg:person.014763021353.63 schema:affiliation grid-institutes:grid.20861.3d
132 schema:familyName McKoy
133 schema:givenName Vincent
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763021353.63
135 rdf:type schema:Person
136 grid-institutes:grid.20861.3d schema:alternateName Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA
137 schema:name Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, 91125, Pasadena, California, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...