Towards Parameter Identification for Large Chemical Reaction Systems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1983

AUTHORS

U. Nowak , P. Deuflhard

ABSTRACT

A standard task in the modelling of chemical reaction systems (CRS) is the identification of rate constants in the kinetic equations from given experimental data — which is the often so-called inverse problem (IP) of chemical kinetics (as opposed to simulation, the direct problem). For sufficiently complex CRS, the modelling problem itself is already rather intricate. So there is a need for user-oriented software that allows the chemist to concentrate on the chemistry of his process under investigation. As a first step in this direction, simulation packages have been developed — such as FACSIMILE [5], CHEMKIN [15] or LARKIN [10,3]. More... »

PAGES

13-26

Book

TITLE

Numerical Treatment of Inverse Problems in Differential and Integral Equations

ISBN

978-0-8176-3125-3
978-1-4684-7324-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4684-7324-7_2

DOI

http://dx.doi.org/10.1007/978-1-4684-7324-7_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000950587


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Nowak", 
        "givenName": "U.", 
        "id": "sg:person.015063135440.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015063135440.52"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Deuflhard", 
        "givenName": "P.", 
        "id": "sg:person.0631627001.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631627001.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0024-3795(80)90232-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002637500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0716001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062852562"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1983", 
    "datePublishedReg": "1983-01-01", 
    "description": "A standard task in the modelling of chemical reaction systems (CRS) is the identification of rate constants in the kinetic equations from given experimental data \u2014 which is the often so-called inverse problem (IP) of chemical kinetics (as opposed to simulation, the direct problem). For sufficiently complex CRS, the modelling problem itself is already rather intricate. So there is a need for user-oriented software that allows the chemist to concentrate on the chemistry of his process under investigation. As a first step in this direction, simulation packages have been developed \u2014 such as FACSIMILE [5], CHEMKIN [15] or LARKIN [10,3].", 
    "editor": [
      {
        "familyName": "Deuflhard", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "familyName": "Hairer", 
        "givenName": "Ernst", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4684-7324-7_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-8176-3125-3", 
        "978-1-4684-7324-7"
      ], 
      "name": "Numerical Treatment of Inverse Problems in Differential and Integral Equations", 
      "type": "Book"
    }, 
    "name": "Towards Parameter Identification for Large Chemical Reaction Systems", 
    "pagination": "13-26", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4684-7324-7_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "048795871652cce72d9e5a2b79d5825cc32cbf6fe395392bd735e2a840607369"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000950587"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Birkh\u00e4user Boston", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4684-7324-7_2", 
      "https://app.dimensions.ai/details/publication/pub.1000950587"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000243.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4684-7324-7_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-7324-7_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-7324-7_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-7324-7_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-7324-7_2'


 

This table displays all metadata directly associated to this object as RDF triples.

78 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4684-7324-7_2 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author Nf3353514bbd14811a1b4eb452dba391d
4 schema:citation https://doi.org/10.1016/0024-3795(80)90232-3
5 https://doi.org/10.1137/0716001
6 schema:datePublished 1983
7 schema:datePublishedReg 1983-01-01
8 schema:description A standard task in the modelling of chemical reaction systems (CRS) is the identification of rate constants in the kinetic equations from given experimental data — which is the often so-called inverse problem (IP) of chemical kinetics (as opposed to simulation, the direct problem). For sufficiently complex CRS, the modelling problem itself is already rather intricate. So there is a need for user-oriented software that allows the chemist to concentrate on the chemistry of his process under investigation. As a first step in this direction, simulation packages have been developed — such as FACSIMILE [5], CHEMKIN [15] or LARKIN [10,3].
9 schema:editor N9fc39b3906884222be7de746d6d78332
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Nd115f84bb3a044f4ac16806fbc1bba01
14 schema:name Towards Parameter Identification for Large Chemical Reaction Systems
15 schema:pagination 13-26
16 schema:productId N29c4110bd74d49059c40ad26f8387b29
17 N43531c079be74478914755b8b8b58b0c
18 Na7d618f0cf8949c490d48d7af3c4c74d
19 schema:publisher Nf19865c52fb5478c9dfc55600c117a2d
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000950587
21 https://doi.org/10.1007/978-1-4684-7324-7_2
22 schema:sdDatePublished 2019-04-16T00:45
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Na3d99b658f204f5a850dde698008d989
25 schema:url http://link.springer.com/10.1007/978-1-4684-7324-7_2
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N0d133c13823242eab207275678b6a196 rdf:first N6890e126f7f54bf08def8d32e6e5946c
30 rdf:rest rdf:nil
31 N1f8dbb5cd7fd4a71857c047c6415e73e rdf:first sg:person.0631627001.13
32 rdf:rest rdf:nil
33 N29c4110bd74d49059c40ad26f8387b29 schema:name doi
34 schema:value 10.1007/978-1-4684-7324-7_2
35 rdf:type schema:PropertyValue
36 N43531c079be74478914755b8b8b58b0c schema:name readcube_id
37 schema:value 048795871652cce72d9e5a2b79d5825cc32cbf6fe395392bd735e2a840607369
38 rdf:type schema:PropertyValue
39 N6890e126f7f54bf08def8d32e6e5946c schema:familyName Hairer
40 schema:givenName Ernst
41 rdf:type schema:Person
42 N9fc39b3906884222be7de746d6d78332 rdf:first Nfb2e6a313b3146d7af1e73ecbe2e01d6
43 rdf:rest N0d133c13823242eab207275678b6a196
44 Na3d99b658f204f5a850dde698008d989 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Na7d618f0cf8949c490d48d7af3c4c74d schema:name dimensions_id
47 schema:value pub.1000950587
48 rdf:type schema:PropertyValue
49 Nd115f84bb3a044f4ac16806fbc1bba01 schema:isbn 978-0-8176-3125-3
50 978-1-4684-7324-7
51 schema:name Numerical Treatment of Inverse Problems in Differential and Integral Equations
52 rdf:type schema:Book
53 Nf19865c52fb5478c9dfc55600c117a2d schema:location Boston, MA
54 schema:name Birkhäuser Boston
55 rdf:type schema:Organisation
56 Nf3353514bbd14811a1b4eb452dba391d rdf:first sg:person.015063135440.52
57 rdf:rest N1f8dbb5cd7fd4a71857c047c6415e73e
58 Nfb2e6a313b3146d7af1e73ecbe2e01d6 schema:familyName Deuflhard
59 schema:givenName Peter
60 rdf:type schema:Person
61 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
62 schema:name Chemical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
65 schema:name Theoretical and Computational Chemistry
66 rdf:type schema:DefinedTerm
67 sg:person.015063135440.52 schema:familyName Nowak
68 schema:givenName U.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015063135440.52
70 rdf:type schema:Person
71 sg:person.0631627001.13 schema:familyName Deuflhard
72 schema:givenName P.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631627001.13
74 rdf:type schema:Person
75 https://doi.org/10.1016/0024-3795(80)90232-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002637500
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1137/0716001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062852562
78 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...