Applications of Gröbner Bases in Non-Linear Computational Geometry View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1988

AUTHORS

Bruno Buchberger

ABSTRACT

Gröbner bases are certain finite sets of multivariate polynomials. Many problems in polynomial ideal theory (algebraic geometry, non-linear computational geometry) can be solved by easy algorithms after transforming the polynomial sets involved in the specification of the problems into Gröbner basis form. In this paper we give some examples of applying the Gröbner bases method to problems in non-linear computational geometry (inverse kinematics in robot programming, collision detection for superellipsoids, implicitization of parametric representations of curves and surfaces, inversion problem for parametric representations, automated geometrical theorem proving, primary decomposition of implicitly defined geometrical objects). The paper starts with a brief summary of the Gröbner bases method. More... »

PAGES

59-87

References to SciGraph publications

Book

TITLE

Mathematical Aspects of Scientific Software

ISBN

978-1-4684-7076-5
978-1-4684-7074-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4684-7074-1_3

DOI

http://dx.doi.org/10.1007/978-1-4684-7074-1_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039141672


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johannes Kepler University of Linz", 
          "id": "https://www.grid.ac/institutes/grid.9970.7", 
          "name": [
            "RISC-LINZ (Research Institute for Symbolic Computation), Johannes Kepler University, A4040\u00a0Linz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buchberger", 
        "givenName": "Bruno", 
        "id": "sg:person.011410010103.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410010103.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0734-189x(84)90140-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015080705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01844169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015815540", 
          "https://doi.org/10.1007/bf01844169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01844169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015815540", 
          "https://doi.org/10.1007/bf01844169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0747-7171(86)80006-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033348633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0747-7171(85)80035-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039076569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcg.1981.1673799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061390612"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988", 
    "datePublishedReg": "1988-01-01", 
    "description": "Gr\u00f6bner bases are certain finite sets of multivariate polynomials. Many problems in polynomial ideal theory (algebraic geometry, non-linear computational geometry) can be solved by easy algorithms after transforming the polynomial sets involved in the specification of the problems into Gr\u00f6bner basis form. In this paper we give some examples of applying the Gr\u00f6bner bases method to problems in non-linear computational geometry (inverse kinematics in robot programming, collision detection for superellipsoids, implicitization of parametric representations of curves and surfaces, inversion problem for parametric representations, automated geometrical theorem proving, primary decomposition of implicitly defined geometrical objects). The paper starts with a brief summary of the Gr\u00f6bner bases method.", 
    "editor": [
      {
        "familyName": "Rice", 
        "givenName": "J. R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4684-7074-1_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4684-7076-5", 
        "978-1-4684-7074-1"
      ], 
      "name": "Mathematical Aspects of Scientific Software", 
      "type": "Book"
    }, 
    "name": "Applications of Gr\u00f6bner Bases in Non-Linear Computational Geometry", 
    "pagination": "59-87", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4684-7074-1_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ba733118df1766fc8bc351154586dc7cd5caaba24297fa6588cbf76454dc8b94"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039141672"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4684-7074-1_3", 
      "https://app.dimensions.ai/details/publication/pub.1039141672"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000267.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4684-7074-1_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-7074-1_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-7074-1_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-7074-1_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-7074-1_3'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4684-7074-1_3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3651560b3ea9461dbb4b7964c458b1bb
4 schema:citation sg:pub.10.1007/bf01844169
5 https://doi.org/10.1016/0734-189x(84)90140-3
6 https://doi.org/10.1016/s0747-7171(85)80035-3
7 https://doi.org/10.1016/s0747-7171(86)80006-2
8 https://doi.org/10.1109/mcg.1981.1673799
9 schema:datePublished 1988
10 schema:datePublishedReg 1988-01-01
11 schema:description Gröbner bases are certain finite sets of multivariate polynomials. Many problems in polynomial ideal theory (algebraic geometry, non-linear computational geometry) can be solved by easy algorithms after transforming the polynomial sets involved in the specification of the problems into Gröbner basis form. In this paper we give some examples of applying the Gröbner bases method to problems in non-linear computational geometry (inverse kinematics in robot programming, collision detection for superellipsoids, implicitization of parametric representations of curves and surfaces, inversion problem for parametric representations, automated geometrical theorem proving, primary decomposition of implicitly defined geometrical objects). The paper starts with a brief summary of the Gröbner bases method.
12 schema:editor N8e5a3cf392294d6ba22bf273f7df5cb5
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N2caf90ba65e8473c8be138fa4aa7e645
17 schema:name Applications of Gröbner Bases in Non-Linear Computational Geometry
18 schema:pagination 59-87
19 schema:productId N588ff6c4991d4084a9e53a5f1807d24a
20 N82cfcd6e2d4641a78e051ec91afb7061
21 Naa8561248ce84723b98b3a24737935f4
22 schema:publisher Na55cb1c683b64b64935831733a83b8a0
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039141672
24 https://doi.org/10.1007/978-1-4684-7074-1_3
25 schema:sdDatePublished 2019-04-15T14:26
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nfca7df1130334a66b2788516453cf237
28 schema:url http://link.springer.com/10.1007/978-1-4684-7074-1_3
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N2caf90ba65e8473c8be138fa4aa7e645 schema:isbn 978-1-4684-7074-1
33 978-1-4684-7076-5
34 schema:name Mathematical Aspects of Scientific Software
35 rdf:type schema:Book
36 N3651560b3ea9461dbb4b7964c458b1bb rdf:first sg:person.011410010103.43
37 rdf:rest rdf:nil
38 N588ff6c4991d4084a9e53a5f1807d24a schema:name dimensions_id
39 schema:value pub.1039141672
40 rdf:type schema:PropertyValue
41 N82cfcd6e2d4641a78e051ec91afb7061 schema:name doi
42 schema:value 10.1007/978-1-4684-7074-1_3
43 rdf:type schema:PropertyValue
44 N8e5a3cf392294d6ba22bf273f7df5cb5 rdf:first Ne20a399245a4440ab71809973b8be2ee
45 rdf:rest rdf:nil
46 Na55cb1c683b64b64935831733a83b8a0 schema:location New York, NY
47 schema:name Springer New York
48 rdf:type schema:Organisation
49 Naa8561248ce84723b98b3a24737935f4 schema:name readcube_id
50 schema:value ba733118df1766fc8bc351154586dc7cd5caaba24297fa6588cbf76454dc8b94
51 rdf:type schema:PropertyValue
52 Ne20a399245a4440ab71809973b8be2ee schema:familyName Rice
53 schema:givenName J. R.
54 rdf:type schema:Person
55 Nfca7df1130334a66b2788516453cf237 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
61 schema:name Pure Mathematics
62 rdf:type schema:DefinedTerm
63 sg:person.011410010103.43 schema:affiliation https://www.grid.ac/institutes/grid.9970.7
64 schema:familyName Buchberger
65 schema:givenName Bruno
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011410010103.43
67 rdf:type schema:Person
68 sg:pub.10.1007/bf01844169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015815540
69 https://doi.org/10.1007/bf01844169
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1016/0734-189x(84)90140-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015080705
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/s0747-7171(85)80035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039076569
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/s0747-7171(86)80006-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033348633
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1109/mcg.1981.1673799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061390612
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.9970.7 schema:alternateName Johannes Kepler University of Linz
80 schema:name RISC-LINZ (Research Institute for Symbolic Computation), Johannes Kepler University, A4040 Linz, Austria
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...