Integral Representation of Functionals Defined on Sobolev Spaces View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1991

AUTHORS

Giovanni Alberti , Giuseppe Buttazzo

ABSTRACT

We give an integral representation result for functionals defined on Sobolev spaces; more precisely, for a functional F, we find necessary and sufficient conditions that imply the integral representation formula $$ F(u,\,B) = \int_B {f(x,\,Du)\,dx.} $$

PAGES

1-12

Book

TITLE

Composite Media and Homogenization Theory

ISBN

978-1-4684-6789-5
978-1-4684-6787-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4684-6787-1_1

DOI

http://dx.doi.org/10.1007/978-1-4684-6787-1_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045846455


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Scuola Normale Superiore di Pisa", 
          "id": "https://www.grid.ac/institutes/grid.6093.c", 
          "name": [
            "Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126\u00a0Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alberti", 
        "givenName": "Giovanni", 
        "id": "sg:person.016436042355.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436042355.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Dipartimento di Matematica, Via Machiavelli, 35, 44100\u00a0Ferrara, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Buttazzo", 
        "givenName": "Giuseppe", 
        "id": "sg:person.014442141672.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014442141672.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-1971-0279647-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003238217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(77)90061-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018159090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1976-13982-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022119746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00263040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024087882", 
          "https://doi.org/10.1007/bf00263040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00263040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024087882", 
          "https://doi.org/10.1007/bf00263040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(80)90059-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036640315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(88)90009-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038059297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01766855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047148921", 
          "https://doi.org/10.1007/bf01766855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01766855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047148921", 
          "https://doi.org/10.1007/bf01766855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01761473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048823754", 
          "https://doi.org/10.1007/bf01761473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01761473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048823754", 
          "https://doi.org/10.1007/bf01761473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1977-0454622-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053049358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1966-125-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072264842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1970-053-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072265344"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991", 
    "datePublishedReg": "1991-01-01", 
    "description": "We give an integral representation result for functionals defined on Sobolev spaces; more precisely, for a functional F, we find necessary and sufficient conditions that imply the integral representation formula $$ F(u,\\,B) = \\int_B {f(x,\\,Du)\\,dx.} $$", 
    "editor": [
      {
        "familyName": "Dal Maso", 
        "givenName": "Gianni", 
        "type": "Person"
      }, 
      {
        "familyName": "Dell\u2019Antonio", 
        "givenName": "Gian Fausto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4684-6787-1_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4684-6789-5", 
        "978-1-4684-6787-1"
      ], 
      "name": "Composite Media and Homogenization Theory", 
      "type": "Book"
    }, 
    "name": "Integral Representation of Functionals Defined on Sobolev Spaces", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4684-6787-1_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "da62b584d5ef6914ba95d07bdfff20558f28f2f4a1e18d345e6c68f714c2362a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045846455"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Birkh\u00e4user Boston", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4684-6787-1_1", 
      "https://app.dimensions.ai/details/publication/pub.1045846455"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000271.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4684-6787-1_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-6787-1_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-6787-1_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-6787-1_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-6787-1_1'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      22 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4684-6787-1_1 schema:author N75557556b40b44ff864959e9d3f48d6f
2 schema:citation sg:pub.10.1007/bf00263040
3 sg:pub.10.1007/bf01761473
4 sg:pub.10.1007/bf01766855
5 https://doi.org/10.1016/0022-1236(77)90061-1
6 https://doi.org/10.1016/0022-1236(80)90059-2
7 https://doi.org/10.1016/0022-1236(88)90009-2
8 https://doi.org/10.1090/s0002-9904-1976-13982-1
9 https://doi.org/10.1090/s0002-9947-1971-0279647-8
10 https://doi.org/10.1090/s0002-9947-1977-0454622-4
11 https://doi.org/10.4153/cjm-1966-125-x
12 https://doi.org/10.4153/cjm-1970-053-3
13 schema:datePublished 1991
14 schema:datePublishedReg 1991-01-01
15 schema:description We give an integral representation result for functionals defined on Sobolev spaces; more precisely, for a functional F, we find necessary and sufficient conditions that imply the integral representation formula $$ F(u,\,B) = \int_B {f(x,\,Du)\,dx.} $$
16 schema:editor N30a85eec84bc4790bd852dcb85258079
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Na3e44f0a2e434e9ea1c673afb32de5d1
21 schema:name Integral Representation of Functionals Defined on Sobolev Spaces
22 schema:pagination 1-12
23 schema:productId N5223e00c3ea440bd9778db74c100c397
24 N70ef55a734d64cab98fe9b187cdc6f62
25 N76fa2a9e55d547a99e5b034d89f6dc43
26 schema:publisher Na9b191b2ad4d4cc5b2a0b0d0df273c15
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045846455
28 https://doi.org/10.1007/978-1-4684-6787-1_1
29 schema:sdDatePublished 2019-04-15T23:54
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N0dba5f64bc824ed8b2d5b51683aa6e27
32 schema:url http://link.springer.com/10.1007/978-1-4684-6787-1_1
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N0dba5f64bc824ed8b2d5b51683aa6e27 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N20570e8144ad477989d1310daf0c918a rdf:first N412101b191cc4ab1b2fdb05afa00e8c1
39 rdf:rest rdf:nil
40 N29c927aef789455795b82afff2cb14c5 rdf:first sg:person.014442141672.38
41 rdf:rest rdf:nil
42 N30a85eec84bc4790bd852dcb85258079 rdf:first N4db2c0359dc04a06b6e7f0cf5f11a93d
43 rdf:rest N20570e8144ad477989d1310daf0c918a
44 N412101b191cc4ab1b2fdb05afa00e8c1 schema:familyName Dell’Antonio
45 schema:givenName Gian Fausto
46 rdf:type schema:Person
47 N4db2c0359dc04a06b6e7f0cf5f11a93d schema:familyName Dal Maso
48 schema:givenName Gianni
49 rdf:type schema:Person
50 N5223e00c3ea440bd9778db74c100c397 schema:name doi
51 schema:value 10.1007/978-1-4684-6787-1_1
52 rdf:type schema:PropertyValue
53 N70ef55a734d64cab98fe9b187cdc6f62 schema:name dimensions_id
54 schema:value pub.1045846455
55 rdf:type schema:PropertyValue
56 N75557556b40b44ff864959e9d3f48d6f rdf:first sg:person.016436042355.89
57 rdf:rest N29c927aef789455795b82afff2cb14c5
58 N76fa2a9e55d547a99e5b034d89f6dc43 schema:name readcube_id
59 schema:value da62b584d5ef6914ba95d07bdfff20558f28f2f4a1e18d345e6c68f714c2362a
60 rdf:type schema:PropertyValue
61 Na3e44f0a2e434e9ea1c673afb32de5d1 schema:isbn 978-1-4684-6787-1
62 978-1-4684-6789-5
63 schema:name Composite Media and Homogenization Theory
64 rdf:type schema:Book
65 Na9b191b2ad4d4cc5b2a0b0d0df273c15 schema:location Boston, MA
66 schema:name Birkhäuser Boston
67 rdf:type schema:Organisation
68 Nffb1dfd554f147d3b1ff353a011b08d3 schema:name Dipartimento di Matematica, Via Machiavelli, 35, 44100 Ferrara, Italy
69 rdf:type schema:Organization
70 sg:person.014442141672.38 schema:affiliation Nffb1dfd554f147d3b1ff353a011b08d3
71 schema:familyName Buttazzo
72 schema:givenName Giuseppe
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014442141672.38
74 rdf:type schema:Person
75 sg:person.016436042355.89 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
76 schema:familyName Alberti
77 schema:givenName Giovanni
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016436042355.89
79 rdf:type schema:Person
80 sg:pub.10.1007/bf00263040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024087882
81 https://doi.org/10.1007/bf00263040
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf01761473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048823754
84 https://doi.org/10.1007/bf01761473
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01766855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047148921
87 https://doi.org/10.1007/bf01766855
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0022-1236(77)90061-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018159090
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0022-1236(80)90059-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036640315
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0022-1236(88)90009-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038059297
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1090/s0002-9904-1976-13982-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022119746
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1090/s0002-9947-1971-0279647-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003238217
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1090/s0002-9947-1977-0454622-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053049358
100 rdf:type schema:CreativeWork
101 https://doi.org/10.4153/cjm-1966-125-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1072264842
102 rdf:type schema:CreativeWork
103 https://doi.org/10.4153/cjm-1970-053-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072265344
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
106 schema:name Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...