Bounded Stationary Stable Processes and Entropy View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1991

AUTHORS

John P. Nolan

ABSTRACT

In this paper we will show that any stationary or stationary increment p-stable process, 1≤p<2, that is sample bounded has a finite metric entropy integral. The result is an application of Talagrand’s work on majorizing measures for stable processes [7]. We combine this result with earlier results to give necessary conditions for a stationary increment stable process to have a.s. bounded or a.s. continuous sample paths. More... »

PAGES

101-105

Book

TITLE

Stable Processes and Related Topics

ISBN

978-1-4684-6780-2
978-1-4684-6778-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4684-6778-9_5

DOI

http://dx.doi.org/10.1007/978-1-4684-6778-9_5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051311755


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, American University, Washington, DC, USA", 
          "id": "http://www.grid.ac/institutes/grid.63124.32", 
          "name": [
            "Department of Mathematics and Statistics, American University, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nolan", 
        "givenName": "John P.", 
        "id": "sg:person.011672042647.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011672042647.68"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1991", 
    "datePublishedReg": "1991-01-01", 
    "description": "In this paper we will show that any stationary or stationary increment p-stable process, 1\u2264p<2, that is sample bounded has a finite metric entropy integral. The result is an application of Talagrand\u2019s work on majorizing measures for stable processes [7]. We combine this result with earlier results to give necessary conditions for a stationary increment stable process to have a.s. bounded or a.s. continuous sample paths.", 
    "editor": [
      {
        "familyName": "Cambanis", 
        "givenName": "Stamatis", 
        "type": "Person"
      }, 
      {
        "familyName": "Samorodnitsky", 
        "givenName": "Gennady", 
        "type": "Person"
      }, 
      {
        "familyName": "Taqqu", 
        "givenName": "Murad S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4684-6778-9_5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4684-6780-2", 
        "978-1-4684-6778-9"
      ], 
      "name": "Stable Processes and Related Topics", 
      "type": "Book"
    }, 
    "keywords": [
      "stable process", 
      "entropy integral", 
      "majorizing measures", 
      "necessary condition", 
      "integrals", 
      "earlier results", 
      "entropy", 
      "applications", 
      "results", 
      "work", 
      "process", 
      "conditions", 
      "measures", 
      "samples", 
      "paper", 
      "stationary increment p", 
      "increment p", 
      "finite metric entropy integral", 
      "metric entropy integral", 
      "Talagrand\u2019s work", 
      "stationary increment stable process", 
      "increment stable process", 
      "stationary stable processes"
    ], 
    "name": "Bounded Stationary Stable Processes and Entropy", 
    "pagination": "101-105", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051311755"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4684-6778-9_5"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4684-6778-9_5", 
      "https://app.dimensions.ai/details/publication/pub.1051311755"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_268.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4684-6778-9_5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-6778-9_5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-6778-9_5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-6778-9_5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-6778-9_5'


 

This table displays all metadata directly associated to this object as RDF triples.

93 TRIPLES      23 PREDICATES      49 URIs      42 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4684-6778-9_5 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Na39ac1bb9e604d2ca42852e674c56039
4 schema:datePublished 1991
5 schema:datePublishedReg 1991-01-01
6 schema:description In this paper we will show that any stationary or stationary increment p-stable process, 1≤p<2, that is sample bounded has a finite metric entropy integral. The result is an application of Talagrand’s work on majorizing measures for stable processes [7]. We combine this result with earlier results to give necessary conditions for a stationary increment stable process to have a.s. bounded or a.s. continuous sample paths.
7 schema:editor Nc8b22adecefe426db262a68c26d21f2a
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N504a96a0ba5641a4b309b22d7b9228a7
12 schema:keywords Talagrand’s work
13 applications
14 conditions
15 earlier results
16 entropy
17 entropy integral
18 finite metric entropy integral
19 increment p
20 increment stable process
21 integrals
22 majorizing measures
23 measures
24 metric entropy integral
25 necessary condition
26 paper
27 process
28 results
29 samples
30 stable process
31 stationary increment p
32 stationary increment stable process
33 stationary stable processes
34 work
35 schema:name Bounded Stationary Stable Processes and Entropy
36 schema:pagination 101-105
37 schema:productId N3962d94dd78645d08ef9822f11d4abf6
38 N985859714f1547d1b14aa9afbc5afe7c
39 schema:publisher N6dcf079c2ed244a7baddc2c9f633720e
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051311755
41 https://doi.org/10.1007/978-1-4684-6778-9_5
42 schema:sdDatePublished 2021-12-01T20:03
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N9d1a2a80cd8f430f8c7fc13ed985008d
45 schema:url https://doi.org/10.1007/978-1-4684-6778-9_5
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N0302789f82a643f7b494400225f2bc73 schema:familyName Cambanis
50 schema:givenName Stamatis
51 rdf:type schema:Person
52 N3962d94dd78645d08ef9822f11d4abf6 schema:name dimensions_id
53 schema:value pub.1051311755
54 rdf:type schema:PropertyValue
55 N504a96a0ba5641a4b309b22d7b9228a7 schema:isbn 978-1-4684-6778-9
56 978-1-4684-6780-2
57 schema:name Stable Processes and Related Topics
58 rdf:type schema:Book
59 N6dcf079c2ed244a7baddc2c9f633720e schema:name Springer Nature
60 rdf:type schema:Organisation
61 N7a2846bac6a54f0f97918d5e749abf7b rdf:first N86cb7b5bfc1a4dafaf1ce0f8d177c1e2
62 rdf:rest rdf:nil
63 N86cb7b5bfc1a4dafaf1ce0f8d177c1e2 schema:familyName Taqqu
64 schema:givenName Murad S.
65 rdf:type schema:Person
66 N985859714f1547d1b14aa9afbc5afe7c schema:name doi
67 schema:value 10.1007/978-1-4684-6778-9_5
68 rdf:type schema:PropertyValue
69 N9d1a2a80cd8f430f8c7fc13ed985008d schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Na39ac1bb9e604d2ca42852e674c56039 rdf:first sg:person.011672042647.68
72 rdf:rest rdf:nil
73 Nb37cd9f54ec4478282400121bda2b630 rdf:first Nbd6d4283452a4b0e8d155399145afec6
74 rdf:rest N7a2846bac6a54f0f97918d5e749abf7b
75 Nbd6d4283452a4b0e8d155399145afec6 schema:familyName Samorodnitsky
76 schema:givenName Gennady
77 rdf:type schema:Person
78 Nc8b22adecefe426db262a68c26d21f2a rdf:first N0302789f82a643f7b494400225f2bc73
79 rdf:rest Nb37cd9f54ec4478282400121bda2b630
80 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
81 schema:name Psychology and Cognitive Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
84 schema:name Psychology
85 rdf:type schema:DefinedTerm
86 sg:person.011672042647.68 schema:affiliation grid-institutes:grid.63124.32
87 schema:familyName Nolan
88 schema:givenName John P.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011672042647.68
90 rdf:type schema:Person
91 grid-institutes:grid.63124.32 schema:alternateName Department of Mathematics and Statistics, American University, Washington, DC, USA
92 schema:name Department of Mathematics and Statistics, American University, Washington, DC, USA
93 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...