Turbulence and Linear Stability in a Discrete Ginzburg-Landau Model View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1990

AUTHORS

Tomas Bohr , Anders W. Pedersen , Mogens H. Jensen , David A. Rand

ABSTRACT

The Complex Ginzburg-Landau partial differential equation appears in many interesting none-quilibrium dynamical systems. It describes an extended system close to a global Hopf bifurcation [1] such as occurs e.g. in oscillatory chemical reactions like the Belousov-Zhabotinsky reaction [2]. In two recent papers [3–4] we have discussed a discrete, “map lattice” version of this equation, analysed the dynamics of vortices and the onset of turbulence. The main results were that vortices can get bound together in “entangled” states where their cores do not move and that the system has a well-defined transition to turbulence below the linear instability threshold for the uniform state. It remains to be seen which of our results will be valid for the continuum Ginzburg-Landau equation; but recently an analytic treatment of the motion of a pair of vortices leads to bound states analogously to our entangled states [5]. More... »

PAGES

425-435

Book

TITLE

Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems

ISBN

978-1-4684-5795-7
978-1-4684-5793-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4684-5793-3_42

DOI

http://dx.doi.org/10.1007/978-1-4684-5793-3_42

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024977917


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "The Niels Bohr Institute, Blegdamsvej 17, DK-2100\u00a0Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bohr", 
        "givenName": "Tomas", 
        "id": "sg:person.0747136773.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747136773.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "The Niels Bohr Institute, Blegdamsvej 17, DK-2100\u00a0Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pedersen", 
        "givenName": "Anders W.", 
        "id": "sg:person.015746741657.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015746741657.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NORDITA, Blegdamsvej 17, DK-2100\u00a0Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jensen", 
        "givenName": "Mogens H.", 
        "id": "sg:person.01152213267.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152213267.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warwick", 
          "id": "https://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Mathematics Institute, University of Warwick, CV4 7AL\u00a0Coventry, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rand", 
        "givenName": "David A.", 
        "id": "sg:person.01256221650.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256221650.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1137/0142054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062840119"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990", 
    "datePublishedReg": "1990-01-01", 
    "description": "The Complex Ginzburg-Landau partial differential equation appears in many interesting none-quilibrium dynamical systems. It describes an extended system close to a global Hopf bifurcation [1] such as occurs e.g. in oscillatory chemical reactions like the Belousov-Zhabotinsky reaction [2]. In two recent papers [3\u20134] we have discussed a discrete, \u201cmap lattice\u201d version of this equation, analysed the dynamics of vortices and the onset of turbulence. The main results were that vortices can get bound together in \u201centangled\u201d states where their cores do not move and that the system has a well-defined transition to turbulence below the linear instability threshold for the uniform state. It remains to be seen which of our results will be valid for the continuum Ginzburg-Landau equation; but recently an analytic treatment of the motion of a pair of vortices leads to bound states analogously to our entangled states [5].", 
    "editor": [
      {
        "familyName": "Busse", 
        "givenName": "F. H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kramer", 
        "givenName": "L.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4684-5793-3_42", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4684-5795-7", 
        "978-1-4684-5793-3"
      ], 
      "name": "Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems", 
      "type": "Book"
    }, 
    "name": "Turbulence and Linear Stability in a Discrete Ginzburg-Landau Model", 
    "pagination": "425-435", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4684-5793-3_42"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76fe1aa070f03a7dfee60d58d0ec7949d8a8f5cd17795823d872c8eedca1eab3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024977917"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4684-5793-3_42", 
      "https://app.dimensions.ai/details/publication/pub.1024977917"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000258.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4684-5793-3_42"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-5793-3_42'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-5793-3_42'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-5793-3_42'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-5793-3_42'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4684-5793-3_42 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N505e4f8cf80a4bec9afc79fb3c1f1c92
4 schema:citation https://doi.org/10.1137/0142054
5 schema:datePublished 1990
6 schema:datePublishedReg 1990-01-01
7 schema:description The Complex Ginzburg-Landau partial differential equation appears in many interesting none-quilibrium dynamical systems. It describes an extended system close to a global Hopf bifurcation [1] such as occurs e.g. in oscillatory chemical reactions like the Belousov-Zhabotinsky reaction [2]. In two recent papers [3–4] we have discussed a discrete, “map lattice” version of this equation, analysed the dynamics of vortices and the onset of turbulence. The main results were that vortices can get bound together in “entangled” states where their cores do not move and that the system has a well-defined transition to turbulence below the linear instability threshold for the uniform state. It remains to be seen which of our results will be valid for the continuum Ginzburg-Landau equation; but recently an analytic treatment of the motion of a pair of vortices leads to bound states analogously to our entangled states [5].
8 schema:editor N3d3c41764d904b458e3c45a6ae2f1cbb
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N7aa6d6f051db4ba48ef4fdc7517acf60
13 schema:name Turbulence and Linear Stability in a Discrete Ginzburg-Landau Model
14 schema:pagination 425-435
15 schema:productId N141b899f3427429c9e1a9ab91b604e10
16 N2bb54ddcb9ae4650835b5bd6495bc4ae
17 N7dc77aacd88d4a5ca59ca7fdd11a9397
18 schema:publisher N8d2cf366174a42dbbc8fe80594f41fab
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024977917
20 https://doi.org/10.1007/978-1-4684-5793-3_42
21 schema:sdDatePublished 2019-04-15T13:28
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Ndc1fb0f07e0047f9bfcee5464b7b88d2
24 schema:url http://link.springer.com/10.1007/978-1-4684-5793-3_42
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N141b899f3427429c9e1a9ab91b604e10 schema:name dimensions_id
29 schema:value pub.1024977917
30 rdf:type schema:PropertyValue
31 N2bb54ddcb9ae4650835b5bd6495bc4ae schema:name readcube_id
32 schema:value 76fe1aa070f03a7dfee60d58d0ec7949d8a8f5cd17795823d872c8eedca1eab3
33 rdf:type schema:PropertyValue
34 N3d3c41764d904b458e3c45a6ae2f1cbb rdf:first Nc79e83cbfd67495eb76689693e0a76a2
35 rdf:rest Nb4eb818188234b36b1da95f1e68e0448
36 N44bf7edb830a406eafda6b4986e1223e rdf:first sg:person.01152213267.83
37 rdf:rest Ne42b6630b6244d4fb678e8b84486ca64
38 N505e4f8cf80a4bec9afc79fb3c1f1c92 rdf:first sg:person.0747136773.38
39 rdf:rest Ncac1b8b6dd544c85a967a374a378ed3e
40 N6aa16fc4fe2346ae908e52fdb7e62010 schema:familyName Kramer
41 schema:givenName L.
42 rdf:type schema:Person
43 N70ba8f66f1c14b1baee6e8e73ab61f3f schema:name NORDITA, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
44 rdf:type schema:Organization
45 N7aa6d6f051db4ba48ef4fdc7517acf60 schema:isbn 978-1-4684-5793-3
46 978-1-4684-5795-7
47 schema:name Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems
48 rdf:type schema:Book
49 N7dc77aacd88d4a5ca59ca7fdd11a9397 schema:name doi
50 schema:value 10.1007/978-1-4684-5793-3_42
51 rdf:type schema:PropertyValue
52 N8d2cf366174a42dbbc8fe80594f41fab schema:location Boston, MA
53 schema:name Springer US
54 rdf:type schema:Organisation
55 Nb4eb818188234b36b1da95f1e68e0448 rdf:first N6aa16fc4fe2346ae908e52fdb7e62010
56 rdf:rest rdf:nil
57 Nc79e83cbfd67495eb76689693e0a76a2 schema:familyName Busse
58 schema:givenName F. H.
59 rdf:type schema:Person
60 Ncac1b8b6dd544c85a967a374a378ed3e rdf:first sg:person.015746741657.17
61 rdf:rest N44bf7edb830a406eafda6b4986e1223e
62 Ndc1fb0f07e0047f9bfcee5464b7b88d2 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Ne42b6630b6244d4fb678e8b84486ca64 rdf:first sg:person.01256221650.54
65 rdf:rest rdf:nil
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:person.01152213267.83 schema:affiliation N70ba8f66f1c14b1baee6e8e73ab61f3f
73 schema:familyName Jensen
74 schema:givenName Mogens H.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152213267.83
76 rdf:type schema:Person
77 sg:person.01256221650.54 schema:affiliation https://www.grid.ac/institutes/grid.7372.1
78 schema:familyName Rand
79 schema:givenName David A.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256221650.54
81 rdf:type schema:Person
82 sg:person.015746741657.17 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
83 schema:familyName Pedersen
84 schema:givenName Anders W.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015746741657.17
86 rdf:type schema:Person
87 sg:person.0747136773.38 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
88 schema:familyName Bohr
89 schema:givenName Tomas
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747136773.38
91 rdf:type schema:Person
92 https://doi.org/10.1137/0142054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062840119
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
95 schema:name The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
96 rdf:type schema:Organization
97 https://www.grid.ac/institutes/grid.7372.1 schema:alternateName University of Warwick
98 schema:name Mathematics Institute, University of Warwick, CV4 7AL Coventry, England
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...