H+-ATPase as an Energy-Converting Enzyme View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1985

AUTHORS

Toshiro Hamamoto , Yasuo Kagawa

ABSTRACT

The main energy sources of living organisms are oxidative and photosynthetic phosphorylation. In both reactions, the energy is finally transduced to the chemical bond energy of ATP by H+-ATPase (EC 3.1.6.3). A part of H+-ATPase was first demonstrated in mitochondria as coupling factor 1 which hydrolyzed ATP and recovered the oxidative phosphorylation of submitochondrial particles depleted of their coupling factor 1 (Penefsky et al., 1960). The role of H+-ATPase has been understood in the light of the chemiosmotic theory; an electrochemical potential difference across the membrane is formed by respiration or photoreduction and H+-ATPase synthesizes ATP from ADP and Pi consuming the energy of H+ flow (Mitchell, 1979; Ferguson and Sorgato, 1982). More... »

PAGES

149-176

Book

TITLE

The Enzymes of Biological Membranes

ISBN

978-1-4684-4606-7
978-1-4684-4604-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4684-4604-3_4

DOI

http://dx.doi.org/10.1007/978-1-4684-4604-3_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033193384


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry, Jichi Medical School, 329-04, Minamikawachi-machi, Tochigi-ken, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410804.9", 
          "name": [
            "Department of Biochemistry, Jichi Medical School, 329-04, Minamikawachi-machi, Tochigi-ken, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamamoto", 
        "givenName": "Toshiro", 
        "id": "sg:person.01250146764.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250146764.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry, Jichi Medical School, 329-04, Minamikawachi-machi, Tochigi-ken, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410804.9", 
          "name": [
            "Department of Biochemistry, Jichi Medical School, 329-04, Minamikawachi-machi, Tochigi-ken, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kagawa", 
        "givenName": "Yasuo", 
        "id": "sg:person.01315742406.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315742406.84"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1985", 
    "datePublishedReg": "1985-01-01", 
    "description": "The main energy sources of living organisms are oxidative and photosynthetic phosphorylation. In both reactions, the energy is finally transduced to the chemical bond energy of ATP by H+-ATPase (EC 3.1.6.3). A part of H+-ATPase was first demonstrated in mitochondria as coupling factor 1 which hydrolyzed ATP and recovered the oxidative phosphorylation of submitochondrial particles depleted of their coupling factor 1 (Penefsky et al., 1960). The role of H+-ATPase has been understood in the light of the chemiosmotic theory; an electrochemical potential difference across the membrane is formed by respiration or photoreduction and H+-ATPase synthesizes ATP from ADP and Pi consuming the energy of H+ flow (Mitchell, 1979; Ferguson and Sorgato, 1982).", 
    "editor": [
      {
        "familyName": "Martonosi", 
        "givenName": "Anthony N.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4684-4604-3_4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4684-4606-7", 
        "978-1-4684-4604-3"
      ], 
      "name": "The Enzymes of Biological Membranes", 
      "type": "Book"
    }, 
    "keywords": [
      "chemical bond energy", 
      "bond energy", 
      "electrochemical potential difference", 
      "chemiosmotic theory", 
      "photoreduction", 
      "photosynthetic phosphorylation", 
      "energy", 
      "potential difference", 
      "reaction", 
      "particles", 
      "energy sources", 
      "membrane", 
      "main energy source", 
      "light", 
      "submitochondrial particles", 
      "enzyme", 
      "coupling factor 1", 
      "factor 1", 
      "source", 
      "oxidative phosphorylation", 
      "PI", 
      "phosphorylation", 
      "ATP", 
      "organisms", 
      "theory", 
      "mitochondria", 
      "role", 
      "respiration", 
      "ADP", 
      "part", 
      "differences", 
      "flow", 
      "Energy-Converting Enzyme"
    ], 
    "name": "H+-ATPase as an Energy-Converting Enzyme", 
    "pagination": "149-176", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033193384"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4684-4604-3_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4684-4604-3_4", 
      "https://app.dimensions.ai/details/publication/pub.1033193384"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_156.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4684-4604-3_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-4604-3_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-4604-3_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-4604-3_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-4604-3_4'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      23 PREDICATES      59 URIs      52 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4684-4604-3_4 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nc00f139914d24da3a5030534d4bf0286
4 schema:datePublished 1985
5 schema:datePublishedReg 1985-01-01
6 schema:description The main energy sources of living organisms are oxidative and photosynthetic phosphorylation. In both reactions, the energy is finally transduced to the chemical bond energy of ATP by H+-ATPase (EC 3.1.6.3). A part of H+-ATPase was first demonstrated in mitochondria as coupling factor 1 which hydrolyzed ATP and recovered the oxidative phosphorylation of submitochondrial particles depleted of their coupling factor 1 (Penefsky et al., 1960). The role of H+-ATPase has been understood in the light of the chemiosmotic theory; an electrochemical potential difference across the membrane is formed by respiration or photoreduction and H+-ATPase synthesizes ATP from ADP and Pi consuming the energy of H+ flow (Mitchell, 1979; Ferguson and Sorgato, 1982).
7 schema:editor Nac564c690ce54e75b49ee029398fbbac
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc93b87c6ab114322bb027ecf729af765
12 schema:keywords ADP
13 ATP
14 Energy-Converting Enzyme
15 PI
16 bond energy
17 chemical bond energy
18 chemiosmotic theory
19 coupling factor 1
20 differences
21 electrochemical potential difference
22 energy
23 energy sources
24 enzyme
25 factor 1
26 flow
27 light
28 main energy source
29 membrane
30 mitochondria
31 organisms
32 oxidative phosphorylation
33 part
34 particles
35 phosphorylation
36 photoreduction
37 photosynthetic phosphorylation
38 potential difference
39 reaction
40 respiration
41 role
42 source
43 submitochondrial particles
44 theory
45 schema:name H+-ATPase as an Energy-Converting Enzyme
46 schema:pagination 149-176
47 schema:productId N84b0a71809f14dd9b2cdf8f842e83426
48 N95e33423677c4be19c31cdd7f2aafc8a
49 schema:publisher N5378dc9f0a2748ca8fa7fc72102a7b27
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033193384
51 https://doi.org/10.1007/978-1-4684-4604-3_4
52 schema:sdDatePublished 2021-11-01T18:48
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N6bffa3e580364b66bac9933d43c06b2a
55 schema:url https://doi.org/10.1007/978-1-4684-4604-3_4
56 sgo:license sg:explorer/license/
57 sgo:sdDataset chapters
58 rdf:type schema:Chapter
59 N5378dc9f0a2748ca8fa7fc72102a7b27 schema:name Springer Nature
60 rdf:type schema:Organisation
61 N6bffa3e580364b66bac9933d43c06b2a schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N84b0a71809f14dd9b2cdf8f842e83426 schema:name dimensions_id
64 schema:value pub.1033193384
65 rdf:type schema:PropertyValue
66 N86d01b95de1a4b3ab9dd9b70b2b3e688 schema:familyName Martonosi
67 schema:givenName Anthony N.
68 rdf:type schema:Person
69 N95e33423677c4be19c31cdd7f2aafc8a schema:name doi
70 schema:value 10.1007/978-1-4684-4604-3_4
71 rdf:type schema:PropertyValue
72 Nac564c690ce54e75b49ee029398fbbac rdf:first N86d01b95de1a4b3ab9dd9b70b2b3e688
73 rdf:rest rdf:nil
74 Nc00f139914d24da3a5030534d4bf0286 rdf:first sg:person.01250146764.29
75 rdf:rest Nf8b806e895a4405a981c683c40bf5b0e
76 Nc93b87c6ab114322bb027ecf729af765 schema:isbn 978-1-4684-4604-3
77 978-1-4684-4606-7
78 schema:name The Enzymes of Biological Membranes
79 rdf:type schema:Book
80 Nf8b806e895a4405a981c683c40bf5b0e rdf:first sg:person.01315742406.84
81 rdf:rest rdf:nil
82 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
83 schema:name Biological Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
86 schema:name Biochemistry and Cell Biology
87 rdf:type schema:DefinedTerm
88 sg:person.01250146764.29 schema:affiliation grid-institutes:grid.410804.9
89 schema:familyName Hamamoto
90 schema:givenName Toshiro
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250146764.29
92 rdf:type schema:Person
93 sg:person.01315742406.84 schema:affiliation grid-institutes:grid.410804.9
94 schema:familyName Kagawa
95 schema:givenName Yasuo
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315742406.84
97 rdf:type schema:Person
98 grid-institutes:grid.410804.9 schema:alternateName Department of Biochemistry, Jichi Medical School, 329-04, Minamikawachi-machi, Tochigi-ken, Japan
99 schema:name Department of Biochemistry, Jichi Medical School, 329-04, Minamikawachi-machi, Tochigi-ken, Japan
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...