Double-Resonance Spectroscopy View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1978

AUTHORS

Jeffrey I. Steinfeld , Paul L. Houston

ABSTRACT

The domain of spectroscopy is a large and richly varied one, constituting one of the basic methodologies of physical science. And yet, the way in which spectroscopy is usually carried out is severely limited: typically, one considers the interaction of a resonant medium with a single light wave, and derives absorption and emission properties separately for each frequency of radiation. In this chapter we shall consider those phenomena resulting from the simultaneous application of two radiation fields to a molecular system. With conventional, incoherent optical fields, no new physical features would be introduced by the simultaneous use of two fields; the intensities of each field are sufficiently low that the absorbing system would respond to each field independently, and the overall effect would simply be the sum of the two interactions. But the ever-widening use of intense, coherent, monochromatic laser radiation sources has led to the possibility of using one field to alter the internal state distribution of an absorbing system, thereby influencing its response to a second radiation field and leading to new physical information. For convenience, we shall term such use of two radiation fields to interrogate a sample “double-resonance spectroscopy.” More... »

PAGES

1-123

References to SciGraph publications

  • 1973. Structure and Properties of Laser Dyes in DYE LASERS
  • 1976. Double-resonance spectroscopy of molecules by means of lasers in LASER SPECTROSCOPY OF ATOMS AND MOLECULES
  • 1974. Infrared-Microwave Double Resonance in LASER SPECTROSCOPY
  • Book

    TITLE

    Laser and Coherence Spectroscopy

    ISBN

    978-1-4684-2354-9
    978-1-4684-2352-5

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-1-4684-2352-5_1

    DOI

    http://dx.doi.org/10.1007/978-1-4684-2352-5_1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051185083


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Steinfeld", 
            "givenName": "Jeffrey I.", 
            "id": "sg:person.01055412577.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055412577.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Department of Chemistry, Cornell University, Ithaca, New York, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Houston", 
            "givenName": "Paul L.", 
            "id": "sg:person.0714231420.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714231420.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4613-4517-6_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000420712", 
              "https://doi.org/10.1007/978-1-4613-4517-6_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-505401-0.50009-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003564554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-07324-8_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009306539", 
              "https://doi.org/10.1007/3-540-07324-8_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-11579-4_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019298554", 
              "https://doi.org/10.1007/978-3-662-11579-4_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/j150447a021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055691326"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2994970", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057890905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3023375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057894519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1119/1.1932741", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062239166"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1119/1.1932852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062239276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1119/1.1933256", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062239537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1119/1.1974134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062244546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1119/1.1974453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062244862"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1978", 
        "datePublishedReg": "1978-01-01", 
        "description": "The domain of spectroscopy is a large and richly varied one, constituting one of the basic methodologies of physical science. And yet, the way in which spectroscopy is usually carried out is severely limited: typically, one considers the interaction of a resonant medium with a single light wave, and derives absorption and emission properties separately for each frequency of radiation. In this chapter we shall consider those phenomena resulting from the simultaneous application of two radiation fields to a molecular system. With conventional, incoherent optical fields, no new physical features would be introduced by the simultaneous use of two fields; the intensities of each field are sufficiently low that the absorbing system would respond to each field independently, and the overall effect would simply be the sum of the two interactions. But the ever-widening use of intense, coherent, monochromatic laser radiation sources has led to the possibility of using one field to alter the internal state distribution of an absorbing system, thereby influencing its response to a second radiation field and leading to new physical information. For convenience, we shall term such use of two radiation fields to interrogate a sample \u201cdouble-resonance spectroscopy.\u201d", 
        "editor": [
          {
            "familyName": "Steinfeld", 
            "givenName": "Jeffrey I.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-1-4684-2352-5_1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-1-4684-2354-9", 
            "978-1-4684-2352-5"
          ], 
          "name": "Laser and Coherence Spectroscopy", 
          "type": "Book"
        }, 
        "name": "Double-Resonance Spectroscopy", 
        "pagination": "1-123", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-1-4684-2352-5_1"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f3d3970e573d0e55fd2ed50623057fed1556833553f292ebe3562521396687c3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051185083"
            ]
          }
        ], 
        "publisher": {
          "location": "Boston, MA", 
          "name": "Springer US", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-1-4684-2352-5_1", 
          "https://app.dimensions.ai/details/publication/pub.1051185083"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T17:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000088.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-1-4684-2352-5_1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-2352-5_1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-2352-5_1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-2352-5_1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-2352-5_1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    114 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-1-4684-2352-5_1 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author Nfb7e29455e6b4507a74f35f6615ff571
    4 schema:citation sg:pub.10.1007/3-540-07324-8_9
    5 sg:pub.10.1007/978-1-4613-4517-6_4
    6 sg:pub.10.1007/978-3-662-11579-4_4
    7 https://doi.org/10.1016/b978-0-12-505401-0.50009-2
    8 https://doi.org/10.1021/j150447a021
    9 https://doi.org/10.1063/1.2994970
    10 https://doi.org/10.1063/1.3023375
    11 https://doi.org/10.1119/1.1932741
    12 https://doi.org/10.1119/1.1932852
    13 https://doi.org/10.1119/1.1933256
    14 https://doi.org/10.1119/1.1974134
    15 https://doi.org/10.1119/1.1974453
    16 schema:datePublished 1978
    17 schema:datePublishedReg 1978-01-01
    18 schema:description The domain of spectroscopy is a large and richly varied one, constituting one of the basic methodologies of physical science. And yet, the way in which spectroscopy is usually carried out is severely limited: typically, one considers the interaction of a resonant medium with a single light wave, and derives absorption and emission properties separately for each frequency of radiation. In this chapter we shall consider those phenomena resulting from the simultaneous application of two radiation fields to a molecular system. With conventional, incoherent optical fields, no new physical features would be introduced by the simultaneous use of two fields; the intensities of each field are sufficiently low that the absorbing system would respond to each field independently, and the overall effect would simply be the sum of the two interactions. But the ever-widening use of intense, coherent, monochromatic laser radiation sources has led to the possibility of using one field to alter the internal state distribution of an absorbing system, thereby influencing its response to a second radiation field and leading to new physical information. For convenience, we shall term such use of two radiation fields to interrogate a sample “double-resonance spectroscopy.”
    19 schema:editor N7f4fe984b14e446aa530e137584bce54
    20 schema:genre chapter
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:isPartOf Naeabda6ef9f443ec8a54d4e72b16e183
    24 schema:name Double-Resonance Spectroscopy
    25 schema:pagination 1-123
    26 schema:productId Nc7303e9eac84475c827b597191ed111f
    27 Nd3243a9f3c084b009d2f546e67079266
    28 Ne71a11ce485c4c74ae886c76d976271d
    29 schema:publisher N5758ea9c66844ae5995d5f57d781c33b
    30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051185083
    31 https://doi.org/10.1007/978-1-4684-2352-5_1
    32 schema:sdDatePublished 2019-04-15T17:03
    33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    34 schema:sdPublisher N83cbd7f767344ab0828b7418dc60d81c
    35 schema:url http://link.springer.com/10.1007/978-1-4684-2352-5_1
    36 sgo:license sg:explorer/license/
    37 sgo:sdDataset chapters
    38 rdf:type schema:Chapter
    39 N54e391e9c7d74374ac9c968522eba1e5 rdf:first sg:person.0714231420.40
    40 rdf:rest rdf:nil
    41 N5758ea9c66844ae5995d5f57d781c33b schema:location Boston, MA
    42 schema:name Springer US
    43 rdf:type schema:Organisation
    44 N7f4fe984b14e446aa530e137584bce54 rdf:first Nedfd013c8e934a1d800df64cf4cb0c71
    45 rdf:rest rdf:nil
    46 N83cbd7f767344ab0828b7418dc60d81c schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 Naeabda6ef9f443ec8a54d4e72b16e183 schema:isbn 978-1-4684-2352-5
    49 978-1-4684-2354-9
    50 schema:name Laser and Coherence Spectroscopy
    51 rdf:type schema:Book
    52 Nc7303e9eac84475c827b597191ed111f schema:name doi
    53 schema:value 10.1007/978-1-4684-2352-5_1
    54 rdf:type schema:PropertyValue
    55 Nd3243a9f3c084b009d2f546e67079266 schema:name dimensions_id
    56 schema:value pub.1051185083
    57 rdf:type schema:PropertyValue
    58 Ne71a11ce485c4c74ae886c76d976271d schema:name readcube_id
    59 schema:value f3d3970e573d0e55fd2ed50623057fed1556833553f292ebe3562521396687c3
    60 rdf:type schema:PropertyValue
    61 Nedfd013c8e934a1d800df64cf4cb0c71 schema:familyName Steinfeld
    62 schema:givenName Jeffrey I.
    63 rdf:type schema:Person
    64 Nfb7e29455e6b4507a74f35f6615ff571 rdf:first sg:person.01055412577.20
    65 rdf:rest N54e391e9c7d74374ac9c968522eba1e5
    66 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Physical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Other Physical Sciences
    71 rdf:type schema:DefinedTerm
    72 sg:person.01055412577.20 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    73 schema:familyName Steinfeld
    74 schema:givenName Jeffrey I.
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055412577.20
    76 rdf:type schema:Person
    77 sg:person.0714231420.40 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    78 schema:familyName Houston
    79 schema:givenName Paul L.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714231420.40
    81 rdf:type schema:Person
    82 sg:pub.10.1007/3-540-07324-8_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009306539
    83 https://doi.org/10.1007/3-540-07324-8_9
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/978-1-4613-4517-6_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000420712
    86 https://doi.org/10.1007/978-1-4613-4517-6_4
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/978-3-662-11579-4_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019298554
    89 https://doi.org/10.1007/978-3-662-11579-4_4
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/b978-0-12-505401-0.50009-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003564554
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1021/j150447a021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055691326
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1063/1.2994970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057890905
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1063/1.3023375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057894519
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1119/1.1932741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062239166
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1119/1.1932852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062239276
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1119/1.1933256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062239537
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1119/1.1974134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062244546
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1119/1.1974453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062244862
    108 rdf:type schema:CreativeWork
    109 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
    110 schema:name Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
    111 rdf:type schema:Organization
    112 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
    113 schema:name Department of Chemistry, Cornell University, Ithaca, New York, USA
    114 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...