Lattice Location of Low-Z Impurities in Medium-Z Targets Using Ion-Induced X-Rays View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1973

AUTHORS

J. F. Chemin , I. V. Mitchell , F. W. Saris

ABSTRACT

The common method of Rutherford backscattering and channeling of light energetic ions is in general not suited to lattice location studies of impurity atoms having a mass similar to or lower than the host. While specific nuclear reactions are sometimes available they usually require high beam doses and yield high backgrounds of scattered particles. In two such situations we have used ion induced x-ray yields to determine lattice location viz. for 32S and 31P implants in Ge single crystals. In the course of this work we have had to identify and optimize a number of experimental parameters, in particular how the beam type affects (a) ψ1/2,xmin and crystal damage rates, (b) x-ray yields (P-K, S-K, Ge-L and Ge-K), target bremsstrahlung and recoil-induced molecular x-ray intensities. Choice of detector geometry, aperture and window also proved to be important. Detection limits for P and S are now certainly better than 1 x 1014 atoms.cm-2 in a thick Ge target for 0.5 MeV proton excitation. We have found that a room temperature implant of 40 keV 31P annealed at 450oC is highly (93%) substitutional in Ge for a dose of 0.7 x 1015 ions.cm-2, but shows a much lower fraction at 2.7 x 1015 ions.cm. Lattice location of S implanted into Ge parallels the pattern from Group VI impurities implanted and annealed in Si, showing ≤ 50% xmin. values for the S signals in <110> and <111> directions. A different distribution for S is implied by <100> channeling data and <111> and <110> angular scans. More... »

PAGES

295-303

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4684-2064-7_26

DOI

http://dx.doi.org/10.1007/978-1-4684-2064-7_26

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035221160


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "L\u2019Universit\u00e9 de Bordeaux, LeHaut-Vigneau, 33-Gradignan, Bordeaux, France", 
          "id": "http://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Chalk River Nuclear Laboratories, Ontario, Canada", 
            "L\u2019Universit\u00e9 de Bordeaux, LeHaut-Vigneau, 33-Gradignan, Bordeaux, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chemin", 
        "givenName": "J. F.", 
        "id": "sg:person.01020173630.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020173630.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chalk River Nuclear Laboratories, Ontario, Canada", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Chalk River Nuclear Laboratories, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitchell", 
        "givenName": "I. V.", 
        "id": "sg:person.0734206006.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734206006.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "FOM-Institute for Atomic and Molecular Physics, Amsterdam, Holland, Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.417889.b", 
          "name": [
            "Chalk River Nuclear Laboratories, Ontario, Canada", 
            "FOM-Institute for Atomic and Molecular Physics, Amsterdam, Holland, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saris", 
        "givenName": "F. W.", 
        "id": "sg:person.015147554343.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015147554343.53"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1973", 
    "datePublishedReg": "1973-01-01", 
    "description": "The common method of Rutherford backscattering and channeling of light energetic ions is in general not suited to lattice location studies of impurity atoms having a mass similar to or lower than the host. While specific nuclear reactions are sometimes available they usually require high beam doses and yield high backgrounds of scattered particles. In two such situations we have used ion induced x-ray yields to determine lattice location viz. for 32S and 31P implants in Ge single crystals. In the course of this work we have had to identify and optimize a number of experimental parameters, in particular how the beam type affects (a) \u03c81/2,xmin and crystal damage rates, (b) x-ray yields (P-K, S-K, Ge-L and Ge-K), target bremsstrahlung and recoil-induced molecular x-ray intensities. Choice of detector geometry, aperture and window also proved to be important. Detection limits for P and S are now certainly better than 1 x 1014 atoms.cm-2 in a thick Ge target for 0.5 MeV proton excitation. We have found that a room temperature implant of 40 keV 31P annealed at 450oC is highly (93%) substitutional in Ge for a dose of 0.7 x 1015 ions.cm-2, but shows a much lower fraction at 2.7 x 1015 ions.cm. Lattice location of S implanted into Ge parallels the pattern from Group VI impurities implanted and annealed in Si, showing \u2264 50% xmin. values for the S signals in <110> and <111> directions. A different distribution for S is implied by <100> channeling data and <111> and <110> angular scans.", 
    "editor": [
      {
        "familyName": "Crowder", 
        "givenName": "Billy L.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4684-2064-7_26", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4684-2066-1", 
        "978-1-4684-2064-7"
      ], 
      "name": "Ion Implantation in Semiconductors and Other Materials", 
      "type": "Book"
    }, 
    "keywords": [
      "X-ray yields", 
      "Ion-Induced X-Rays", 
      "light energetic ions", 
      "lattice location", 
      "specific nuclear reactions", 
      "Ge single crystals", 
      "X-ray intensity", 
      "low Z impurities", 
      "energetic ions", 
      "lattice location studies", 
      "Ge target", 
      "nuclear reactions", 
      "proton excitations", 
      "Rutherford backscattering", 
      "detector geometry", 
      "s signal", 
      "impurity atoms", 
      "beam doses", 
      "angular scans", 
      "X-ray", 
      "beam type", 
      "single crystals", 
      "group-VI impurities", 
      "room temperature", 
      "ions", 
      "Ge", 
      "atoms", 
      "experimental parameters", 
      "high background", 
      "impurities", 
      "bremsstrahlung", 
      "backscattering", 
      "excitation", 
      "low fraction", 
      "channeling", 
      "aperture", 
      "Si", 
      "crystals", 
      "damage rate", 
      "particles", 
      "location studies", 
      "xmin", 
      "detection limit", 
      "intensity", 
      "mass", 
      "temperature", 
      "geometry", 
      "limit", 
      "window", 
      "signals", 
      "direction", 
      "distribution", 
      "yield", 
      "locations viz", 
      "different distributions", 
      "parameters", 
      "fraction", 
      "target", 
      "work", 
      "reaction", 
      "method", 
      "values", 
      "common method", 
      "background", 
      "viz", 
      "data", 
      "location", 
      "dose", 
      "number", 
      "scans", 
      "rate", 
      "host", 
      "types", 
      "doses", 
      "patterns", 
      "choice", 
      "such situations", 
      "study", 
      "situation", 
      "implants", 
      "course"
    ], 
    "name": "Lattice Location of Low-Z Impurities in Medium-Z Targets Using Ion-Induced X-Rays", 
    "pagination": "295-303", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035221160"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4684-2064-7_26"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4684-2064-7_26", 
      "https://app.dimensions.ai/details/publication/pub.1035221160"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_410.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4684-2064-7_26"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-2064-7_26'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-2064-7_26'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-2064-7_26'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-2064-7_26'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      22 PREDICATES      106 URIs      99 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4684-2064-7_26 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Naab312fc37344d28ab1b353814ff8119
4 schema:datePublished 1973
5 schema:datePublishedReg 1973-01-01
6 schema:description The common method of Rutherford backscattering and channeling of light energetic ions is in general not suited to lattice location studies of impurity atoms having a mass similar to or lower than the host. While specific nuclear reactions are sometimes available they usually require high beam doses and yield high backgrounds of scattered particles. In two such situations we have used ion induced x-ray yields to determine lattice location viz. for 32S and 31P implants in Ge single crystals. In the course of this work we have had to identify and optimize a number of experimental parameters, in particular how the beam type affects (a) ψ1/2,xmin and crystal damage rates, (b) x-ray yields (P-K, S-K, Ge-L and Ge-K), target bremsstrahlung and recoil-induced molecular x-ray intensities. Choice of detector geometry, aperture and window also proved to be important. Detection limits for P and S are now certainly better than 1 x 1014 atoms.cm-2 in a thick Ge target for 0.5 MeV proton excitation. We have found that a room temperature implant of 40 keV 31P annealed at 450oC is highly (93%) substitutional in Ge for a dose of 0.7 x 1015 ions.cm-2, but shows a much lower fraction at 2.7 x 1015 ions.cm. Lattice location of S implanted into Ge parallels the pattern from Group VI impurities implanted and annealed in Si, showing ≤ 50% xmin. values for the S signals in <110> and <111> directions. A different distribution for S is implied by <100> channeling data and <111> and <110> angular scans.
7 schema:editor N55d6aea04b7a4a04ab28b29f08167ce1
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N3b00a875d2874db88383312d9708e855
11 schema:keywords Ge
12 Ge single crystals
13 Ge target
14 Ion-Induced X-Rays
15 Rutherford backscattering
16 Si
17 X-ray
18 X-ray intensity
19 X-ray yields
20 angular scans
21 aperture
22 atoms
23 background
24 backscattering
25 beam doses
26 beam type
27 bremsstrahlung
28 channeling
29 choice
30 common method
31 course
32 crystals
33 damage rate
34 data
35 detection limit
36 detector geometry
37 different distributions
38 direction
39 distribution
40 dose
41 doses
42 energetic ions
43 excitation
44 experimental parameters
45 fraction
46 geometry
47 group-VI impurities
48 high background
49 host
50 implants
51 impurities
52 impurity atoms
53 intensity
54 ions
55 lattice location
56 lattice location studies
57 light energetic ions
58 limit
59 location
60 location studies
61 locations viz
62 low Z impurities
63 low fraction
64 mass
65 method
66 nuclear reactions
67 number
68 parameters
69 particles
70 patterns
71 proton excitations
72 rate
73 reaction
74 room temperature
75 s signal
76 scans
77 signals
78 single crystals
79 situation
80 specific nuclear reactions
81 study
82 such situations
83 target
84 temperature
85 types
86 values
87 viz
88 window
89 work
90 xmin
91 yield
92 schema:name Lattice Location of Low-Z Impurities in Medium-Z Targets Using Ion-Induced X-Rays
93 schema:pagination 295-303
94 schema:productId N02021942c2694117aa95acb14777e469
95 Nae5529a725a6499da3c9ebe4d33b054e
96 schema:publisher Nd6b669c488854ed4b921b82df555740b
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035221160
98 https://doi.org/10.1007/978-1-4684-2064-7_26
99 schema:sdDatePublished 2022-11-24T21:18
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N3b0355fdd99c4b47861a3cf484787d46
102 schema:url https://doi.org/10.1007/978-1-4684-2064-7_26
103 sgo:license sg:explorer/license/
104 sgo:sdDataset chapters
105 rdf:type schema:Chapter
106 N02021942c2694117aa95acb14777e469 schema:name dimensions_id
107 schema:value pub.1035221160
108 rdf:type schema:PropertyValue
109 N3b00a875d2874db88383312d9708e855 schema:isbn 978-1-4684-2064-7
110 978-1-4684-2066-1
111 schema:name Ion Implantation in Semiconductors and Other Materials
112 rdf:type schema:Book
113 N3b0355fdd99c4b47861a3cf484787d46 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N55d6aea04b7a4a04ab28b29f08167ce1 rdf:first Nb99ac0844b4b448b930c09c4220ff781
116 rdf:rest rdf:nil
117 N76262defdffc4c9f99e5a005a43c94b6 rdf:first sg:person.0734206006.79
118 rdf:rest N977ecb8ef84c40c880140787b99dc9fe
119 N977ecb8ef84c40c880140787b99dc9fe rdf:first sg:person.015147554343.53
120 rdf:rest rdf:nil
121 Naab312fc37344d28ab1b353814ff8119 rdf:first sg:person.01020173630.85
122 rdf:rest N76262defdffc4c9f99e5a005a43c94b6
123 Nae5529a725a6499da3c9ebe4d33b054e schema:name doi
124 schema:value 10.1007/978-1-4684-2064-7_26
125 rdf:type schema:PropertyValue
126 Nb99ac0844b4b448b930c09c4220ff781 schema:familyName Crowder
127 schema:givenName Billy L.
128 rdf:type schema:Person
129 Nd6b669c488854ed4b921b82df555740b schema:name Springer Nature
130 rdf:type schema:Organisation
131 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
132 schema:name Physical Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
135 schema:name Other Physical Sciences
136 rdf:type schema:DefinedTerm
137 sg:person.01020173630.85 schema:affiliation grid-institutes:grid.412041.2
138 schema:familyName Chemin
139 schema:givenName J. F.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020173630.85
141 rdf:type schema:Person
142 sg:person.015147554343.53 schema:affiliation grid-institutes:grid.417889.b
143 schema:familyName Saris
144 schema:givenName F. W.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015147554343.53
146 rdf:type schema:Person
147 sg:person.0734206006.79 schema:affiliation grid-institutes:None
148 schema:familyName Mitchell
149 schema:givenName I. V.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734206006.79
151 rdf:type schema:Person
152 grid-institutes:None schema:alternateName Chalk River Nuclear Laboratories, Ontario, Canada
153 schema:name Chalk River Nuclear Laboratories, Ontario, Canada
154 rdf:type schema:Organization
155 grid-institutes:grid.412041.2 schema:alternateName L’Université de Bordeaux, LeHaut-Vigneau, 33-Gradignan, Bordeaux, France
156 schema:name Chalk River Nuclear Laboratories, Ontario, Canada
157 L’Université de Bordeaux, LeHaut-Vigneau, 33-Gradignan, Bordeaux, France
158 rdf:type schema:Organization
159 grid-institutes:grid.417889.b schema:alternateName FOM-Institute for Atomic and Molecular Physics, Amsterdam, Holland, Netherlands
160 schema:name Chalk River Nuclear Laboratories, Ontario, Canada
161 FOM-Institute for Atomic and Molecular Physics, Amsterdam, Holland, Netherlands
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...