Deposition of YBa2Cu3O7 Films on Sapphire by Rf triode Sputtering View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1990

AUTHORS

R. E. Soltis , E. M. Logothetis , D. W. Hoffman , J. W. Hangas , S. Shinozaki , M. Aslam , L. E. Wenger , J. T. Chen

ABSTRACT

In the last three years, many different film deposition techniques have been successfully employed for the preparation of YBa2Cu3O7 films on a variety of substrates (1). Initially, as-grown films were poor superconductors and required a high-temperature post-growth anneal to attain good superconducting properties. Using this two-step (deposition and subsequent anneal) procedure, high quality superconducting films were obtained on many inert substrates such as SrTiO3, MgO, and ZrO2. However, on technologically important substrates, e.g. Si, SiO2, and sapphire, the quality of the films after annealing was poor due to a strong interaction between the films and the substrates. For sapphire substrates, for example, the highest Tc reported was in the 70–75 K range. To avoid or minimize this film/substrate interaction, several different approaches have been explored including the use of buffer layers (1–4) and the use of very rapid thermal annealing procedures (5). Simon et al (6) used a ZrO2 buffer layer to obtain films on sapphire with zero resistance at about 88 K. The most successful approach has been the in-situ growth process in which the temperature of the substrate during deposition is high enough to produce a film with good crystallinity, but sufficiently low to avoid excessive film/substrate interaction. Recently, in-situ growth techniques have produced YBCO films on sapphire with Tc of about 87 K (7) and on Si substrates with Tc of about 86 K (8). In this paper, we describe our results on the growth of YBCO films directly on sapphire by the two-step process. We find that films deposited on sapphire by rf triode sputtering and annealed in O2 at 860–890°C have a Tc as high as 85 K. Our work shows that it is indeed possible to grow good quality YBCO films directly on sapphire by a high temperature post-growth annealing. More... »

PAGES

125-129

Book

TITLE

Science and Technology of Thin Film Superconductors 2

ISBN

978-1-4684-1347-2
978-1-4684-1345-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4684-1345-8_17

DOI

http://dx.doi.org/10.1007/978-1-4684-1345-8_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020585217


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ford Motor Company (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417922.b", 
          "name": [
            "Research Staff, Ford Motor Company, Dearborn, MI\u00a048121, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Soltis", 
        "givenName": "R. E.", 
        "id": "sg:person.014463463313.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463463313.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ford Motor Company (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417922.b", 
          "name": [
            "Research Staff, Ford Motor Company, Dearborn, MI\u00a048121, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Logothetis", 
        "givenName": "E. M.", 
        "id": "sg:person.013666102713.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666102713.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ford Motor Company (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417922.b", 
          "name": [
            "Research Staff, Ford Motor Company, Dearborn, MI\u00a048121, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hoffman", 
        "givenName": "D. W.", 
        "id": "sg:person.013740334421.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013740334421.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ford Motor Company (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417922.b", 
          "name": [
            "Research Staff, Ford Motor Company, Dearborn, MI\u00a048121, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hangas", 
        "givenName": "J. W.", 
        "id": "sg:person.014140461563.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014140461563.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ford Motor Company (United States)", 
          "id": "https://www.grid.ac/institutes/grid.417922.b", 
          "name": [
            "Research Staff, Ford Motor Company, Dearborn, MI\u00a048121, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shinozaki", 
        "givenName": "S.", 
        "id": "sg:person.014127614602.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014127614602.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Michigan State University", 
          "id": "https://www.grid.ac/institutes/grid.17088.36", 
          "name": [
            "Electrical Engineering Department and Center for Fundamental Materials Research, Michigan State Univ., East Lansing, MI\u00a048824, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aslam", 
        "givenName": "M.", 
        "id": "sg:person.016673522420.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673522420.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wayne State University", 
          "id": "https://www.grid.ac/institutes/grid.254444.7", 
          "name": [
            "Physics Department, Wayne State University, Detroit, MI\u00a048202, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wenger", 
        "givenName": "L. E.", 
        "id": "sg:person.01032236656.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032236656.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wayne State University", 
          "id": "https://www.grid.ac/institutes/grid.254444.7", 
          "name": [
            "Physics Department, Wayne State University, Detroit, MI\u00a048202, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "J. T.", 
        "id": "sg:person.07527067471.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07527067471.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0921-4534(89)90947-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032787280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(89)90947-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032787280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(89)91167-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044223293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(89)91167-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044223293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.99670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058139748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/16.43774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061094668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.92798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061120165"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990", 
    "datePublishedReg": "1990-01-01", 
    "description": "In the last three years, many different film deposition techniques have been successfully employed for the preparation of YBa2Cu3O7 films on a variety of substrates (1). Initially, as-grown films were poor superconductors and required a high-temperature post-growth anneal to attain good superconducting properties. Using this two-step (deposition and subsequent anneal) procedure, high quality superconducting films were obtained on many inert substrates such as SrTiO3, MgO, and ZrO2. However, on technologically important substrates, e.g. Si, SiO2, and sapphire, the quality of the films after annealing was poor due to a strong interaction between the films and the substrates. For sapphire substrates, for example, the highest Tc reported was in the 70\u201375 K range. To avoid or minimize this film/substrate interaction, several different approaches have been explored including the use of buffer layers (1\u20134) and the use of very rapid thermal annealing procedures (5). Simon et al (6) used a ZrO2 buffer layer to obtain films on sapphire with zero resistance at about 88 K. The most successful approach has been the in-situ growth process in which the temperature of the substrate during deposition is high enough to produce a film with good crystallinity, but sufficiently low to avoid excessive film/substrate interaction. Recently, in-situ growth techniques have produced YBCO films on sapphire with Tc of about 87 K (7) and on Si substrates with Tc of about 86 K (8). In this paper, we describe our results on the growth of YBCO films directly on sapphire by the two-step process. We find that films deposited on sapphire by rf triode sputtering and annealed in O2 at 860\u2013890\u00b0C have a Tc as high as 85 K. Our work shows that it is indeed possible to grow good quality YBCO films directly on sapphire by a high temperature post-growth annealing.", 
    "editor": [
      {
        "familyName": "McConnell", 
        "givenName": "Robert D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Noufi", 
        "givenName": "Rommel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4684-1345-8_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4684-1347-2", 
        "978-1-4684-1345-8"
      ], 
      "name": "Science and Technology of Thin Film Superconductors 2", 
      "type": "Book"
    }, 
    "name": "Deposition of YBa2Cu3O7 Films on Sapphire by Rf triode Sputtering", 
    "pagination": "125-129", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4684-1345-8_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6215f6002bbe03d80767b2dcf28ea6ef7eb19278f5ff442d9789ca38c7085446"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020585217"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4684-1345-8_17", 
      "https://app.dimensions.ai/details/publication/pub.1020585217"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000255.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4684-1345-8_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-1345-8_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-1345-8_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-1345-8_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-1345-8_17'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4684-1345-8_17 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N70c903040dbd43f7b798e4cc6d355c0a
4 schema:citation https://doi.org/10.1016/0921-4534(89)90947-7
5 https://doi.org/10.1016/0921-4534(89)91167-2
6 https://doi.org/10.1063/1.99670
7 https://doi.org/10.1109/16.43774
8 https://doi.org/10.1109/20.92798
9 schema:datePublished 1990
10 schema:datePublishedReg 1990-01-01
11 schema:description In the last three years, many different film deposition techniques have been successfully employed for the preparation of YBa2Cu3O7 films on a variety of substrates (1). Initially, as-grown films were poor superconductors and required a high-temperature post-growth anneal to attain good superconducting properties. Using this two-step (deposition and subsequent anneal) procedure, high quality superconducting films were obtained on many inert substrates such as SrTiO3, MgO, and ZrO2. However, on technologically important substrates, e.g. Si, SiO2, and sapphire, the quality of the films after annealing was poor due to a strong interaction between the films and the substrates. For sapphire substrates, for example, the highest Tc reported was in the 70–75 K range. To avoid or minimize this film/substrate interaction, several different approaches have been explored including the use of buffer layers (1–4) and the use of very rapid thermal annealing procedures (5). Simon et al (6) used a ZrO2 buffer layer to obtain films on sapphire with zero resistance at about 88 K. The most successful approach has been the in-situ growth process in which the temperature of the substrate during deposition is high enough to produce a film with good crystallinity, but sufficiently low to avoid excessive film/substrate interaction. Recently, in-situ growth techniques have produced YBCO films on sapphire with Tc of about 87 K (7) and on Si substrates with Tc of about 86 K (8). In this paper, we describe our results on the growth of YBCO films directly on sapphire by the two-step process. We find that films deposited on sapphire by rf triode sputtering and annealed in O2 at 860–890°C have a Tc as high as 85 K. Our work shows that it is indeed possible to grow good quality YBCO films directly on sapphire by a high temperature post-growth annealing.
12 schema:editor N8127236a6b23404998ca6142063a9c29
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N3e43511ac3ed4cd9b61e353c37aa520a
17 schema:name Deposition of YBa2Cu3O7 Films on Sapphire by Rf triode Sputtering
18 schema:pagination 125-129
19 schema:productId N0a21a700484a4ef5829e48f84dbfd17d
20 Nd673aa22b23a421580b541c6b8fc1fd7
21 Nf64caa429097466d8b18c66e1a56c121
22 schema:publisher N0448872a55324675a83af502ade4ce89
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020585217
24 https://doi.org/10.1007/978-1-4684-1345-8_17
25 schema:sdDatePublished 2019-04-15T23:51
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nfa90875126eb411c8071c9b1cc0de41c
28 schema:url http://link.springer.com/10.1007/978-1-4684-1345-8_17
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N0200213c207a4b6ca853afe47fa6d631 rdf:first sg:person.07527067471.01
33 rdf:rest rdf:nil
34 N0448872a55324675a83af502ade4ce89 schema:location Boston, MA
35 schema:name Springer US
36 rdf:type schema:Organisation
37 N0a21a700484a4ef5829e48f84dbfd17d schema:name readcube_id
38 schema:value 6215f6002bbe03d80767b2dcf28ea6ef7eb19278f5ff442d9789ca38c7085446
39 rdf:type schema:PropertyValue
40 N3e43511ac3ed4cd9b61e353c37aa520a schema:isbn 978-1-4684-1345-8
41 978-1-4684-1347-2
42 schema:name Science and Technology of Thin Film Superconductors 2
43 rdf:type schema:Book
44 N47192393c6ca4e5fa9e50074cf7546ec rdf:first sg:person.013666102713.61
45 rdf:rest Ne250f13daabb4945a5dd4378c228a391
46 N47a228468ad54f2d89e191d6a0a9eec2 schema:familyName Noufi
47 schema:givenName Rommel
48 rdf:type schema:Person
49 N5757f91c4bd24b779cafd0bb205b71ba rdf:first sg:person.016673522420.23
50 rdf:rest N95e05aebc441405abc2978100574c65b
51 N5b391f5c20fa4d84a2480b2ebd74777e rdf:first sg:person.014127614602.42
52 rdf:rest N5757f91c4bd24b779cafd0bb205b71ba
53 N70c903040dbd43f7b798e4cc6d355c0a rdf:first sg:person.014463463313.00
54 rdf:rest N47192393c6ca4e5fa9e50074cf7546ec
55 N8127236a6b23404998ca6142063a9c29 rdf:first Ncecc2def27064963943a6d7d5fce1728
56 rdf:rest Neb07a71bcfda458696c1278f69fcdaf9
57 N95e05aebc441405abc2978100574c65b rdf:first sg:person.01032236656.29
58 rdf:rest N0200213c207a4b6ca853afe47fa6d631
59 Nc776c9bd75ee4d1ba80759d8dc98ee92 rdf:first sg:person.014140461563.27
60 rdf:rest N5b391f5c20fa4d84a2480b2ebd74777e
61 Ncecc2def27064963943a6d7d5fce1728 schema:familyName McConnell
62 schema:givenName Robert D.
63 rdf:type schema:Person
64 Nd673aa22b23a421580b541c6b8fc1fd7 schema:name dimensions_id
65 schema:value pub.1020585217
66 rdf:type schema:PropertyValue
67 Ne250f13daabb4945a5dd4378c228a391 rdf:first sg:person.013740334421.84
68 rdf:rest Nc776c9bd75ee4d1ba80759d8dc98ee92
69 Neb07a71bcfda458696c1278f69fcdaf9 rdf:first N47a228468ad54f2d89e191d6a0a9eec2
70 rdf:rest rdf:nil
71 Nf64caa429097466d8b18c66e1a56c121 schema:name doi
72 schema:value 10.1007/978-1-4684-1345-8_17
73 rdf:type schema:PropertyValue
74 Nfa90875126eb411c8071c9b1cc0de41c schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
80 schema:name Materials Engineering
81 rdf:type schema:DefinedTerm
82 sg:person.01032236656.29 schema:affiliation https://www.grid.ac/institutes/grid.254444.7
83 schema:familyName Wenger
84 schema:givenName L. E.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032236656.29
86 rdf:type schema:Person
87 sg:person.013666102713.61 schema:affiliation https://www.grid.ac/institutes/grid.417922.b
88 schema:familyName Logothetis
89 schema:givenName E. M.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666102713.61
91 rdf:type schema:Person
92 sg:person.013740334421.84 schema:affiliation https://www.grid.ac/institutes/grid.417922.b
93 schema:familyName Hoffman
94 schema:givenName D. W.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013740334421.84
96 rdf:type schema:Person
97 sg:person.014127614602.42 schema:affiliation https://www.grid.ac/institutes/grid.417922.b
98 schema:familyName Shinozaki
99 schema:givenName S.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014127614602.42
101 rdf:type schema:Person
102 sg:person.014140461563.27 schema:affiliation https://www.grid.ac/institutes/grid.417922.b
103 schema:familyName Hangas
104 schema:givenName J. W.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014140461563.27
106 rdf:type schema:Person
107 sg:person.014463463313.00 schema:affiliation https://www.grid.ac/institutes/grid.417922.b
108 schema:familyName Soltis
109 schema:givenName R. E.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463463313.00
111 rdf:type schema:Person
112 sg:person.016673522420.23 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
113 schema:familyName Aslam
114 schema:givenName M.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016673522420.23
116 rdf:type schema:Person
117 sg:person.07527067471.01 schema:affiliation https://www.grid.ac/institutes/grid.254444.7
118 schema:familyName Chen
119 schema:givenName J. T.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07527067471.01
121 rdf:type schema:Person
122 https://doi.org/10.1016/0921-4534(89)90947-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032787280
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/0921-4534(89)91167-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044223293
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1063/1.99670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058139748
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/16.43774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061094668
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/20.92798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061120165
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
133 schema:name Electrical Engineering Department and Center for Fundamental Materials Research, Michigan State Univ., East Lansing, MI 48824, USA
134 rdf:type schema:Organization
135 https://www.grid.ac/institutes/grid.254444.7 schema:alternateName Wayne State University
136 schema:name Physics Department, Wayne State University, Detroit, MI 48202, USA
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.417922.b schema:alternateName Ford Motor Company (United States)
139 schema:name Research Staff, Ford Motor Company, Dearborn, MI 48121, USA
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...