Laser Cooling of Atomic Beams and its Application to Frequency Standards View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1990

AUTHORS

N. Beverini , F. Strumia

ABSTRACT

When an atom absorbs or emits a photon, the momentum conservation law implies that its momentum must change by a quantity equal to the photon momentum hv/c. Let us consider an atom irradiated by a running wave, resonant with an atomic transition. Each absorption-spontaneous emission cycle will lead to a variation of the atom velocity of a quantity hv/mc. At contrary, an absorption followed by a stimulated emission process, with two equal photons, does not change the atomic momentum. Thus, taking into account also the saturation effects, an atom experiences an effective force given by the ratio of the photon momentum with the mean time interval between two spontaneous emission, that is $$F = \frac{{h\gamma }} {\lambda }\frac{S} {{1 + S + (\Delta \omega - kv)^2 /\gamma ^2 }}$$ (1) where γ is the HWHM homogeneous linewidth, λ=c/ν is the resonance wavelength, and S=I/Is the saturation parameter of the radiation. More... »

PAGES

469-478

Book

TITLE

Applied Laser Spectroscopy

ISBN

978-1-4684-1344-1
978-1-4684-1342-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4684-1342-7_35

DOI

http://dx.doi.org/10.1007/978-1-4684-1342-7_35

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018904061


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pisa", 
          "id": "https://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beverini", 
        "givenName": "N.", 
        "id": "sg:person.014115035561.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115035561.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pisa", 
          "id": "https://www.grid.ac/institutes/grid.5395.a", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 di Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strumia", 
        "givenName": "F.", 
        "id": "sg:person.011723573566.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011723573566.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01340182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003858840", 
          "https://doi.org/10.1007/bf01340182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(84)90184-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009747478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(84)90184-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009747478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-74501-0_48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011179442", 
          "https://doi.org/10.1007/978-3-642-74501-0_48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(76)90388-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023774848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(76)90388-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023774848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(75)90159-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050761389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(75)90159-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050761389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0026-1394/24/3/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058977222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0026-1394/8/3/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058981317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.26.l1847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063042282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.2.001776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065170582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.11.000291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065211119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.14.000350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065212126"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990", 
    "datePublishedReg": "1990-01-01", 
    "description": "When an atom absorbs or emits a photon, the momentum conservation law implies that its momentum must change by a quantity equal to the photon momentum hv/c. Let us consider an atom irradiated by a running wave, resonant with an atomic transition. Each absorption-spontaneous emission cycle will lead to a variation of the atom velocity of a quantity hv/mc. At contrary, an absorption followed by a stimulated emission process, with two equal photons, does not change the atomic momentum. Thus, taking into account also the saturation effects, an atom experiences an effective force given by the ratio of the photon momentum with the mean time interval between two spontaneous emission, that is $$F = \\frac{{h\\gamma }} {\\lambda }\\frac{S} {{1 + S + (\\Delta \\omega - kv)^2 /\\gamma ^2 }}$$ (1) where \u03b3 is the HWHM homogeneous linewidth, \u03bb=c/\u03bd is the resonance wavelength, and S=I/Is the saturation parameter of the radiation.", 
    "editor": [
      {
        "familyName": "Demtr\u00f6der", 
        "givenName": "Wolfgang", 
        "type": "Person"
      }, 
      {
        "familyName": "Inguscio", 
        "givenName": "Massimo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4684-1342-7_35", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4684-1344-1", 
        "978-1-4684-1342-7"
      ], 
      "name": "Applied Laser Spectroscopy", 
      "type": "Book"
    }, 
    "name": "Laser Cooling of Atomic Beams and its Application to Frequency Standards", 
    "pagination": "469-478", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4684-1342-7_35"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5a12aef4f160e66322e4e96894548c7dda24a96c6e7f33bb3d3a79ebab3f0743"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018904061"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4684-1342-7_35", 
      "https://app.dimensions.ai/details/publication/pub.1018904061"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000254.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4684-1342-7_35"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-1342-7_35'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-1342-7_35'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-1342-7_35'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4684-1342-7_35'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4684-1342-7_35 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N894e36c6d193431e85079740ab6be2d1
4 schema:citation sg:pub.10.1007/978-3-642-74501-0_48
5 sg:pub.10.1007/bf01340182
6 https://doi.org/10.1016/0030-4018(75)90159-5
7 https://doi.org/10.1016/0030-4018(76)90388-6
8 https://doi.org/10.1016/0030-4018(84)90184-6
9 https://doi.org/10.1088/0026-1394/24/3/004
10 https://doi.org/10.1088/0026-1394/8/3/001
11 https://doi.org/10.1103/physrevlett.54.996
12 https://doi.org/10.1143/jjap.26.l1847
13 https://doi.org/10.1364/josab.2.001776
14 https://doi.org/10.1364/ol.11.000291
15 https://doi.org/10.1364/ol.14.000350
16 schema:datePublished 1990
17 schema:datePublishedReg 1990-01-01
18 schema:description When an atom absorbs or emits a photon, the momentum conservation law implies that its momentum must change by a quantity equal to the photon momentum hv/c. Let us consider an atom irradiated by a running wave, resonant with an atomic transition. Each absorption-spontaneous emission cycle will lead to a variation of the atom velocity of a quantity hv/mc. At contrary, an absorption followed by a stimulated emission process, with two equal photons, does not change the atomic momentum. Thus, taking into account also the saturation effects, an atom experiences an effective force given by the ratio of the photon momentum with the mean time interval between two spontaneous emission, that is $$F = \frac{{h\gamma }} {\lambda }\frac{S} {{1 + S + (\Delta \omega - kv)^2 /\gamma ^2 }}$$ (1) where γ is the HWHM homogeneous linewidth, λ=c/ν is the resonance wavelength, and S=I/Is the saturation parameter of the radiation.
19 schema:editor N3b496f524cb14d39a7db8fe34e6ec1ff
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N090a3c90497c4dffa492a4cc2e5fd228
24 schema:name Laser Cooling of Atomic Beams and its Application to Frequency Standards
25 schema:pagination 469-478
26 schema:productId N2cff839f7a064490939e48f2a90b1f72
27 N4ceee07ec0e34dff928d30667aca64e0
28 N772c554d62944d13b4f0879489c8ba8b
29 schema:publisher N58306265abdd4a62828fe77bb08b7281
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018904061
31 https://doi.org/10.1007/978-1-4684-1342-7_35
32 schema:sdDatePublished 2019-04-15T18:10
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N9e1739f489174b5cb4ba000da3cfb6f9
35 schema:url http://link.springer.com/10.1007/978-1-4684-1342-7_35
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N090a3c90497c4dffa492a4cc2e5fd228 schema:isbn 978-1-4684-1342-7
40 978-1-4684-1344-1
41 schema:name Applied Laser Spectroscopy
42 rdf:type schema:Book
43 N2cff839f7a064490939e48f2a90b1f72 schema:name dimensions_id
44 schema:value pub.1018904061
45 rdf:type schema:PropertyValue
46 N3b496f524cb14d39a7db8fe34e6ec1ff rdf:first N90f2fb00051d4b5aac000cf55835acd9
47 rdf:rest Nb2f02ce6e62e4b1d8e56334ccdad3913
48 N4c7f9c55673849f9b4be6d30bc5f593c rdf:first sg:person.011723573566.14
49 rdf:rest rdf:nil
50 N4ceee07ec0e34dff928d30667aca64e0 schema:name doi
51 schema:value 10.1007/978-1-4684-1342-7_35
52 rdf:type schema:PropertyValue
53 N58306265abdd4a62828fe77bb08b7281 schema:location Boston, MA
54 schema:name Springer US
55 rdf:type schema:Organisation
56 N772c554d62944d13b4f0879489c8ba8b schema:name readcube_id
57 schema:value 5a12aef4f160e66322e4e96894548c7dda24a96c6e7f33bb3d3a79ebab3f0743
58 rdf:type schema:PropertyValue
59 N894e36c6d193431e85079740ab6be2d1 rdf:first sg:person.014115035561.30
60 rdf:rest N4c7f9c55673849f9b4be6d30bc5f593c
61 N90f2fb00051d4b5aac000cf55835acd9 schema:familyName Demtröder
62 schema:givenName Wolfgang
63 rdf:type schema:Person
64 N9e1739f489174b5cb4ba000da3cfb6f9 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nb2f02ce6e62e4b1d8e56334ccdad3913 rdf:first Ne0675b3857e246cb99aed47b44c1a98d
67 rdf:rest rdf:nil
68 Ne0675b3857e246cb99aed47b44c1a98d schema:familyName Inguscio
69 schema:givenName Massimo
70 rdf:type schema:Person
71 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
72 schema:name Physical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
75 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
76 rdf:type schema:DefinedTerm
77 sg:person.011723573566.14 schema:affiliation https://www.grid.ac/institutes/grid.5395.a
78 schema:familyName Strumia
79 schema:givenName F.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011723573566.14
81 rdf:type schema:Person
82 sg:person.014115035561.30 schema:affiliation https://www.grid.ac/institutes/grid.5395.a
83 schema:familyName Beverini
84 schema:givenName N.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014115035561.30
86 rdf:type schema:Person
87 sg:pub.10.1007/978-3-642-74501-0_48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011179442
88 https://doi.org/10.1007/978-3-642-74501-0_48
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01340182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003858840
91 https://doi.org/10.1007/bf01340182
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0030-4018(75)90159-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050761389
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0030-4018(76)90388-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023774848
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0030-4018(84)90184-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009747478
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1088/0026-1394/24/3/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058977222
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1088/0026-1394/8/3/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058981317
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevlett.54.996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791923
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1143/jjap.26.l1847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063042282
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1364/josab.2.001776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065170582
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1364/ol.11.000291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065211119
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1364/ol.14.000350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065212126
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.5395.a schema:alternateName University of Pisa
114 schema:name Dipartimento di Fisica, Università di Pisa, Italy
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...