Observation of Resonant Excess Photon Detachment Via a Window Resonance in the Negative Cesium Ion View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

Henrick Stepelfeldt , Peter Balling , Harold K. Haugen

ABSTRACT

Excess photon absorption (EPA) has been a subject of intense investigation over the past decade in strong field atomic physics (see overviews by Ref. [1–2]). In EPA the atom absorbs more photons than the minimum number required to reach the ionization limit. The process manifests itself in the energy spectrum of the ejected photoelectrons as a series of peaks separated in energy by the photon energy. In the case of neutral atoms the process is often denoted Above Threshold Ionization (ATI) and was observed for the first time in 1979 by Agostini and coworkers [3]. The similar process in negative ions, known as excess photon detachment (EPD), represents a qualitatively new situation in strong-field atomic physics since the additional electron in a negative ion is bound in a short-range potential in contrast to the long-range Coulomb potential. The requirement of conservation of both energy and momentum forbids the absorption of photons by a free electron. Hence, the absorption of any excess photons has to occur as an integral part of the detachment process, where the electron is still able to exchange momentum with the remaining atomic core. In the case of photodetachment of negative ions this is a much more stringent requirement than in the case of photoionization in which the long-range Coulomb potential makes photon-electron interactions possible to rather large distances from the atomic core. Also, the short-range potential implies that negative ions can exist only in a finite number of bound states, in general only in the ground state. This lack of excited bound states removes complications in the multiphoton-detachment process due to transient resonances [1]. More... »

PAGES

493-500

Book

TITLE

Super-Intense Laser-Atom Physics

ISBN

978-1-4615-7965-6
978-1-4615-7963-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-7963-2_41

DOI

http://dx.doi.org/10.1007/978-1-4615-7963-2_41

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034639082


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Institute of Physics and Astronomy, University of Aarhus, DK-800\u00a0Aarhus C, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stepelfeldt", 
        "givenName": "Henrick", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Institute of Physics and Astronomy, University of Aarhus, DK-800\u00a0Aarhus C, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balling", 
        "givenName": "Peter", 
        "id": "sg:person.0672766542.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672766542.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "McMaster University", 
          "id": "https://www.grid.ac/institutes/grid.25073.33", 
          "name": [
            "IMR and McMaster Accelerator Laboratory, McMaster University, 1280 Main Street West, Ontario, L8S 4 M1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haugen", 
        "givenName": "Harold K.", 
        "id": "sg:person.01015342056.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015342056.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0953-4075/24/16/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006052646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/25/8/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009890291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/21/21/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017181925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6727(89)90007-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039802466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6727(89)90007-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039802466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/24/2/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044817868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/25/14/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050580402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.17.201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.17.201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.5178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.5178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.42.1405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060481792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.42.1405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060481792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.32.189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060778009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.32.189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060778009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.42.1127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060783504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.42.1127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060783504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.3459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.3459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805814"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "Excess photon absorption (EPA) has been a subject of intense investigation over the past decade in strong field atomic physics (see overviews by Ref. [1\u20132]). In EPA the atom absorbs more photons than the minimum number required to reach the ionization limit. The process manifests itself in the energy spectrum of the ejected photoelectrons as a series of peaks separated in energy by the photon energy. In the case of neutral atoms the process is often denoted Above Threshold Ionization (ATI) and was observed for the first time in 1979 by Agostini and coworkers [3]. The similar process in negative ions, known as excess photon detachment (EPD), represents a qualitatively new situation in strong-field atomic physics since the additional electron in a negative ion is bound in a short-range potential in contrast to the long-range Coulomb potential. The requirement of conservation of both energy and momentum forbids the absorption of photons by a free electron. Hence, the absorption of any excess photons has to occur as an integral part of the detachment process, where the electron is still able to exchange momentum with the remaining atomic core. In the case of photodetachment of negative ions this is a much more stringent requirement than in the case of photoionization in which the long-range Coulomb potential makes photon-electron interactions possible to rather large distances from the atomic core. Also, the short-range potential implies that negative ions can exist only in a finite number of bound states, in general only in the ground state. This lack of excited bound states removes complications in the multiphoton-detachment process due to transient resonances [1].", 
    "editor": [
      {
        "familyName": "Piraux", 
        "givenName": "Bernard", 
        "type": "Person"
      }, 
      {
        "familyName": "L\u2019Huillier", 
        "givenName": "Anne", 
        "type": "Person"
      }, 
      {
        "familyName": "Rz\u0105\u017cewski", 
        "givenName": "Kazimierz", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-7963-2_41", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4615-7965-6", 
        "978-1-4615-7963-2"
      ], 
      "name": "Super-Intense Laser-Atom Physics", 
      "type": "Book"
    }, 
    "name": "Observation of Resonant Excess Photon Detachment Via a Window Resonance in the Negative Cesium Ion", 
    "pagination": "493-500", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-7963-2_41"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a501fe59805ca373a8a5582588383387fc7511e50e26fe8ed9ff53c5fe795625"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034639082"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-7963-2_41", 
      "https://app.dimensions.ai/details/publication/pub.1034639082"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000264.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4615-7963-2_41"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-7963-2_41'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-7963-2_41'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-7963-2_41'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-7963-2_41'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-7963-2_41 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nc4313c374ed646cbb87d93e3fcddb2e4
4 schema:citation https://doi.org/10.1016/0079-6727(89)90007-4
5 https://doi.org/10.1088/0953-4075/21/21/012
6 https://doi.org/10.1088/0953-4075/24/16/010
7 https://doi.org/10.1088/0953-4075/24/2/004
8 https://doi.org/10.1088/0953-4075/25/14/005
9 https://doi.org/10.1088/0953-4075/25/8/011
10 https://doi.org/10.1103/physreva.17.201
11 https://doi.org/10.1103/physreva.36.5178
12 https://doi.org/10.1103/physreva.42.1405
13 https://doi.org/10.1103/physrevlett.32.189
14 https://doi.org/10.1103/physrevlett.42.1127
15 https://doi.org/10.1103/physrevlett.67.1712
16 https://doi.org/10.1103/physrevlett.67.1731
17 https://doi.org/10.1103/physrevlett.69.3459
18 schema:datePublished 1993
19 schema:datePublishedReg 1993-01-01
20 schema:description Excess photon absorption (EPA) has been a subject of intense investigation over the past decade in strong field atomic physics (see overviews by Ref. [1–2]). In EPA the atom absorbs more photons than the minimum number required to reach the ionization limit. The process manifests itself in the energy spectrum of the ejected photoelectrons as a series of peaks separated in energy by the photon energy. In the case of neutral atoms the process is often denoted Above Threshold Ionization (ATI) and was observed for the first time in 1979 by Agostini and coworkers [3]. The similar process in negative ions, known as excess photon detachment (EPD), represents a qualitatively new situation in strong-field atomic physics since the additional electron in a negative ion is bound in a short-range potential in contrast to the long-range Coulomb potential. The requirement of conservation of both energy and momentum forbids the absorption of photons by a free electron. Hence, the absorption of any excess photons has to occur as an integral part of the detachment process, where the electron is still able to exchange momentum with the remaining atomic core. In the case of photodetachment of negative ions this is a much more stringent requirement than in the case of photoionization in which the long-range Coulomb potential makes photon-electron interactions possible to rather large distances from the atomic core. Also, the short-range potential implies that negative ions can exist only in a finite number of bound states, in general only in the ground state. This lack of excited bound states removes complications in the multiphoton-detachment process due to transient resonances [1].
21 schema:editor N66c8cac28f174f91b55eb1f94ddf2f7a
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf Nb33c6d9553744cc5acd8a9c8869df687
26 schema:name Observation of Resonant Excess Photon Detachment Via a Window Resonance in the Negative Cesium Ion
27 schema:pagination 493-500
28 schema:productId N242e722af7c940bc8cc05859b6e8eeb4
29 N717e46848ca2430e844c65cbb7910da1
30 Nd43502c7695046c9987c2f92c5cf7d1f
31 schema:publisher N0b2eae4d0cb5496d9211c09dbf002b8e
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034639082
33 https://doi.org/10.1007/978-1-4615-7963-2_41
34 schema:sdDatePublished 2019-04-16T00:50
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N98092d25fdbe41c3a39a03dbced5f538
37 schema:url http://link.springer.com/10.1007/978-1-4615-7963-2_41
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N0b2eae4d0cb5496d9211c09dbf002b8e schema:location Boston, MA
42 schema:name Springer US
43 rdf:type schema:Organisation
44 N13536082811940d9882dea7bfea32c75 schema:familyName Rzążewski
45 schema:givenName Kazimierz
46 rdf:type schema:Person
47 N141fc8d7e3f24a70b377af46b591202e rdf:first Nd0234cce198c4446a2eeacbdec98261c
48 rdf:rest N5df79d021bf24360b88924dde62a163d
49 N143281cf7af242c1bb73f3dcd9f2b460 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
50 schema:familyName Stepelfeldt
51 schema:givenName Henrick
52 rdf:type schema:Person
53 N1ca65911fa0a424eb5f9d43e841ecd03 rdf:first sg:person.01015342056.35
54 rdf:rest rdf:nil
55 N242e722af7c940bc8cc05859b6e8eeb4 schema:name dimensions_id
56 schema:value pub.1034639082
57 rdf:type schema:PropertyValue
58 N2c1fb5240426401f8b03ec4967533d57 rdf:first sg:person.0672766542.01
59 rdf:rest N1ca65911fa0a424eb5f9d43e841ecd03
60 N38b7bbf423ff43bba5d411e444d2c743 schema:familyName Piraux
61 schema:givenName Bernard
62 rdf:type schema:Person
63 N5df79d021bf24360b88924dde62a163d rdf:first N13536082811940d9882dea7bfea32c75
64 rdf:rest rdf:nil
65 N66c8cac28f174f91b55eb1f94ddf2f7a rdf:first N38b7bbf423ff43bba5d411e444d2c743
66 rdf:rest N141fc8d7e3f24a70b377af46b591202e
67 N717e46848ca2430e844c65cbb7910da1 schema:name doi
68 schema:value 10.1007/978-1-4615-7963-2_41
69 rdf:type schema:PropertyValue
70 N98092d25fdbe41c3a39a03dbced5f538 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nb33c6d9553744cc5acd8a9c8869df687 schema:isbn 978-1-4615-7963-2
73 978-1-4615-7965-6
74 schema:name Super-Intense Laser-Atom Physics
75 rdf:type schema:Book
76 Nc4313c374ed646cbb87d93e3fcddb2e4 rdf:first N143281cf7af242c1bb73f3dcd9f2b460
77 rdf:rest N2c1fb5240426401f8b03ec4967533d57
78 Nd0234cce198c4446a2eeacbdec98261c schema:familyName L’Huillier
79 schema:givenName Anne
80 rdf:type schema:Person
81 Nd43502c7695046c9987c2f92c5cf7d1f schema:name readcube_id
82 schema:value a501fe59805ca373a8a5582588383387fc7511e50e26fe8ed9ff53c5fe795625
83 rdf:type schema:PropertyValue
84 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
85 schema:name Physical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
88 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
89 rdf:type schema:DefinedTerm
90 sg:person.01015342056.35 schema:affiliation https://www.grid.ac/institutes/grid.25073.33
91 schema:familyName Haugen
92 schema:givenName Harold K.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015342056.35
94 rdf:type schema:Person
95 sg:person.0672766542.01 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
96 schema:familyName Balling
97 schema:givenName Peter
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672766542.01
99 rdf:type schema:Person
100 https://doi.org/10.1016/0079-6727(89)90007-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039802466
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1088/0953-4075/21/21/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017181925
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1088/0953-4075/24/16/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006052646
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1088/0953-4075/24/2/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044817868
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1088/0953-4075/25/14/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050580402
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1088/0953-4075/25/8/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009890291
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physreva.17.201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466979
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physreva.36.5178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060476863
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physreva.42.1405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060481792
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevlett.32.189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060778009
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevlett.42.1127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060783504
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevlett.67.1712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803176
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevlett.67.1731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803182
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevlett.69.3459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805814
127 rdf:type schema:CreativeWork
128 https://www.grid.ac/institutes/grid.25073.33 schema:alternateName McMaster University
129 schema:name IMR and McMaster Accelerator Laboratory, McMaster University, 1280 Main Street West, Ontario, L8S 4 M1, Canada
130 rdf:type schema:Organization
131 https://www.grid.ac/institutes/grid.7048.b schema:alternateName Aarhus University
132 schema:name Institute of Physics and Astronomy, University of Aarhus, DK-800 Aarhus C, Denmark
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...