On Central Limit Theory for Families of Strongly Mixing Additive Random Functions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

M. R. Leadbetter , Holger Rootzén

ABSTRACT

The paper considers distributional limits for families of additive random interval functions ζt = ζt(I), under an array form of strong mixing. This provides a natural general setting for discussing the central limit problem in a variety of situations, including sums of strongly mixing arrays, and certain random measures of interest in continuous parameter extremal theory. In particular previous results on array sums are extended, providing also insights into the role of various mixing conditions used in earlier works. More... »

PAGES

211-223

Book

TITLE

Stochastic Processes

ISBN

978-1-4615-7911-3
978-1-4615-7909-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-7909-0_24

DOI

http://dx.doi.org/10.1007/978-1-4615-7909-0_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033711701


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Leadbetter", 
        "givenName": "M. R.", 
        "id": "sg:person.010453124705.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010453124705.04"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Rootz\u00e9n", 
        "givenName": "Holger", 
        "id": "sg:person.0110670156.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0110670156.21"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "The paper considers distributional limits for families of additive random interval functions \u03b6t = \u03b6t(I), under an array form of strong mixing. This provides a natural general setting for discussing the central limit problem in a variety of situations, including sums of strongly mixing arrays, and certain random measures of interest in continuous parameter extremal theory. In particular previous results on array sums are extended, providing also insights into the role of various mixing conditions used in earlier works.", 
    "editor": [
      {
        "familyName": "Cambanis", 
        "givenName": "Stamatis", 
        "type": "Person"
      }, 
      {
        "familyName": "Ghosh", 
        "givenName": "Jayanta K.", 
        "type": "Person"
      }, 
      {
        "familyName": "Karandikar", 
        "givenName": "Rajeeva L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Sen", 
        "givenName": "Pranab K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-7909-0_24", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4615-7911-3", 
        "978-1-4615-7909-0"
      ], 
      "name": "Stochastic Processes", 
      "type": "Book"
    }, 
    "keywords": [
      "central limit problem", 
      "central limit theory", 
      "random measures", 
      "extremal theory", 
      "limit theory", 
      "random function", 
      "general setting", 
      "limit problem", 
      "variety of situations", 
      "theory", 
      "previous results", 
      "sum", 
      "earlier work", 
      "distributional limits", 
      "strong mixing", 
      "problem", 
      "array form", 
      "\u03b6t", 
      "function", 
      "limit", 
      "form", 
      "situation", 
      "family", 
      "conditions", 
      "interest", 
      "results", 
      "work", 
      "measures", 
      "setting", 
      "variety", 
      "array", 
      "mixing", 
      "role", 
      "paper", 
      "additive random interval functions \u03b6t", 
      "random interval functions \u03b6t", 
      "interval functions \u03b6t", 
      "functions \u03b6t", 
      "natural general setting", 
      "certain random measures", 
      "continuous parameter extremal theory", 
      "parameter extremal theory", 
      "particular previous results", 
      "array sums", 
      "Additive Random Functions"
    ], 
    "name": "On Central Limit Theory for Families of Strongly Mixing Additive Random Functions", 
    "pagination": "211-223", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033711701"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-7909-0_24"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-7909-0_24", 
      "https://app.dimensions.ai/details/publication/pub.1033711701"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_326.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4615-7909-0_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-7909-0_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-7909-0_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-7909-0_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-7909-0_24'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      23 PREDICATES      71 URIs      64 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-7909-0_24 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nd1669335ab8b46d1b49b225bb1eeca22
4 schema:datePublished 1993
5 schema:datePublishedReg 1993-01-01
6 schema:description The paper considers distributional limits for families of additive random interval functions ζt = ζt(I), under an array form of strong mixing. This provides a natural general setting for discussing the central limit problem in a variety of situations, including sums of strongly mixing arrays, and certain random measures of interest in continuous parameter extremal theory. In particular previous results on array sums are extended, providing also insights into the role of various mixing conditions used in earlier works.
7 schema:editor Na765923ea5754dfab530638e169eac64
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N47e2ad7eae7d46e49aef46800cb131f6
12 schema:keywords Additive Random Functions
13 additive random interval functions ζt
14 array
15 array form
16 array sums
17 central limit problem
18 central limit theory
19 certain random measures
20 conditions
21 continuous parameter extremal theory
22 distributional limits
23 earlier work
24 extremal theory
25 family
26 form
27 function
28 functions ζt
29 general setting
30 interest
31 interval functions ζt
32 limit
33 limit problem
34 limit theory
35 measures
36 mixing
37 natural general setting
38 paper
39 parameter extremal theory
40 particular previous results
41 previous results
42 problem
43 random function
44 random interval functions ζt
45 random measures
46 results
47 role
48 setting
49 situation
50 strong mixing
51 sum
52 theory
53 variety
54 variety of situations
55 work
56 ζt
57 schema:name On Central Limit Theory for Families of Strongly Mixing Additive Random Functions
58 schema:pagination 211-223
59 schema:productId N9298a499a18b4cfcbb950daf7ac8a9b4
60 Nc102ba2c46c248b5a3e6bd5d319a4328
61 schema:publisher N44aefc15fa53437ea87b432b743d99af
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033711701
63 https://doi.org/10.1007/978-1-4615-7909-0_24
64 schema:sdDatePublished 2022-01-01T19:18
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N0f7f46d60e1b4519a873209931cb3a39
67 schema:url https://doi.org/10.1007/978-1-4615-7909-0_24
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N0f7f46d60e1b4519a873209931cb3a39 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N11055309436044498a49540df53fca32 rdf:first N7e4f891bb36743a19139a7917279f0b9
74 rdf:rest rdf:nil
75 N30aee4ab061a463993d419d3e8c1da9a rdf:first sg:person.0110670156.21
76 rdf:rest rdf:nil
77 N30c64482e75b47d8b6393d2345f949b2 schema:familyName Ghosh
78 schema:givenName Jayanta K.
79 rdf:type schema:Person
80 N387b0980da2748bb9ab069452942f022 schema:familyName Cambanis
81 schema:givenName Stamatis
82 rdf:type schema:Person
83 N44aefc15fa53437ea87b432b743d99af schema:name Springer Nature
84 rdf:type schema:Organisation
85 N47e2ad7eae7d46e49aef46800cb131f6 schema:isbn 978-1-4615-7909-0
86 978-1-4615-7911-3
87 schema:name Stochastic Processes
88 rdf:type schema:Book
89 N6c68c10d83294893ba0abb71ffe336f5 schema:familyName Karandikar
90 schema:givenName Rajeeva L.
91 rdf:type schema:Person
92 N714f76dcc7c04f9e81849aa52b1de342 rdf:first N30c64482e75b47d8b6393d2345f949b2
93 rdf:rest N92630ef3e23345bda2b622a8d818ac37
94 N7e4f891bb36743a19139a7917279f0b9 schema:familyName Sen
95 schema:givenName Pranab K.
96 rdf:type schema:Person
97 N92630ef3e23345bda2b622a8d818ac37 rdf:first N6c68c10d83294893ba0abb71ffe336f5
98 rdf:rest N11055309436044498a49540df53fca32
99 N9298a499a18b4cfcbb950daf7ac8a9b4 schema:name doi
100 schema:value 10.1007/978-1-4615-7909-0_24
101 rdf:type schema:PropertyValue
102 Na765923ea5754dfab530638e169eac64 rdf:first N387b0980da2748bb9ab069452942f022
103 rdf:rest N714f76dcc7c04f9e81849aa52b1de342
104 Nc102ba2c46c248b5a3e6bd5d319a4328 schema:name dimensions_id
105 schema:value pub.1033711701
106 rdf:type schema:PropertyValue
107 Nd1669335ab8b46d1b49b225bb1eeca22 rdf:first sg:person.010453124705.04
108 rdf:rest N30aee4ab061a463993d419d3e8c1da9a
109 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
110 schema:name Mathematical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
113 schema:name Statistics
114 rdf:type schema:DefinedTerm
115 sg:person.010453124705.04 schema:familyName Leadbetter
116 schema:givenName M. R.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010453124705.04
118 rdf:type schema:Person
119 sg:person.0110670156.21 schema:familyName Rootzén
120 schema:givenName Holger
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0110670156.21
122 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...