Tracking Behaviour of Lattice Filters for Linear and Quadratic FM Signals View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

M. H. Kahaei , A. M. Zoubir , B. Boashash , M. Deriche

ABSTRACT

In practical applications, the statistics of the signal are unknown and time-varying. Hence, the coefficients of an adaptive filter converge towards the optimal values and track the time-varying statistics of the input signal during the steady state time. In order to analyse the performance of adaptive filters, the behaviour of optimal and adaptive coefficients as well as the resulting output error signals need to be carefully studied. Frequency modulated (FM) input signals in noise are a well-known class of nonstationary random processes with time-varying spectra. They possess a structure which facilitates the theoretical analysis and are also encountered in many real applications. In investigating the behaviour of adaptive filters tracking linear FM signals, a great effort has been devoted to transversal filters [9], [1]. However, an alternative structure is the lattice filter with its attractive properties. Some of these properties include high convergence speed, easy computations, less sensitivity to eigenvalues spread, ease of implementations, and providing a Gram-Schmidt type of orthogonali-sation of the input signal [8]. More... »

PAGES

207-214

Book

TITLE

Digital Signal Processing for Communication Systems

ISBN

978-1-4613-7804-4
978-1-4615-6119-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-6119-4_23

DOI

http://dx.doi.org/10.1007/978-1-4615-6119-4_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050893872


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Queensland University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.1024.7", 
          "name": [
            "Signal Processing Research Centre, QUT, GPO Box 2434, Brisbane, Q 4001, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kahaei", 
        "givenName": "M. H.", 
        "id": "sg:person.013641142252.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641142252.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queensland University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.1024.7", 
          "name": [
            "Signal Processing Research Centre, QUT, GPO Box 2434, Brisbane, Q 4001, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zoubir", 
        "givenName": "A. M.", 
        "id": "sg:person.013316510015.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316510015.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queensland University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.1024.7", 
          "name": [
            "Signal Processing Research Centre, QUT, GPO Box 2434, Brisbane, Q 4001, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boashash", 
        "givenName": "B.", 
        "id": "sg:person.0715720670.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715720670.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queensland University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.1024.7", 
          "name": [
            "Signal Processing Research Centre, QUT, GPO Box 2434, Brisbane, Q 4001, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deriche", 
        "givenName": "M.", 
        "id": "sg:person.010146373533.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010146373533.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/18.75269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061100943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.135378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061178872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.301832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061228760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.80878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061230938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1976.10286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061443393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1975.1162662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061518072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcs.1981.1085016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061563465"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "In practical applications, the statistics of the signal are unknown and time-varying. Hence, the coefficients of an adaptive filter converge towards the optimal values and track the time-varying statistics of the input signal during the steady state time. In order to analyse the performance of adaptive filters, the behaviour of optimal and adaptive coefficients as well as the resulting output error signals need to be carefully studied. Frequency modulated (FM) input signals in noise are a well-known class of nonstationary random processes with time-varying spectra. They possess a structure which facilitates the theoretical analysis and are also encountered in many real applications. In investigating the behaviour of adaptive filters tracking linear FM signals, a great effort has been devoted to transversal filters [9], [1]. However, an alternative structure is the lattice filter with its attractive properties. Some of these properties include high convergence speed, easy computations, less sensitivity to eigenvalues spread, ease of implementations, and providing a Gram-Schmidt type of orthogonali-sation of the input signal [8].", 
    "editor": [
      {
        "familyName": "Wysocki", 
        "givenName": "Tadeusz", 
        "type": "Person"
      }, 
      {
        "familyName": "Razavi", 
        "givenName": "Hashem", 
        "type": "Person"
      }, 
      {
        "familyName": "Honary", 
        "givenName": "Bahram", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-6119-4_23", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-7804-4", 
        "978-1-4615-6119-4"
      ], 
      "name": "Digital Signal Processing for Communication Systems", 
      "type": "Book"
    }, 
    "name": "Tracking Behaviour of Lattice Filters for Linear and Quadratic FM Signals", 
    "pagination": "207-214", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-6119-4_23"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f270cc1a84a04e4af7f6717a76a844996005f15b555eff1144992383d1ebfa07"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050893872"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-6119-4_23", 
      "https://app.dimensions.ai/details/publication/pub.1050893872"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000275.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4615-6119-4_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-6119-4_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-6119-4_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-6119-4_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-6119-4_23'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-6119-4_23 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nbd99aa70c2b64f94b995ecd6e6752a48
4 schema:citation https://doi.org/10.1109/18.75269
5 https://doi.org/10.1109/5.135378
6 https://doi.org/10.1109/78.301832
7 https://doi.org/10.1109/78.80878
8 https://doi.org/10.1109/proc.1976.10286
9 https://doi.org/10.1109/tassp.1975.1162662
10 https://doi.org/10.1109/tcs.1981.1085016
11 schema:datePublished 1997
12 schema:datePublishedReg 1997-01-01
13 schema:description In practical applications, the statistics of the signal are unknown and time-varying. Hence, the coefficients of an adaptive filter converge towards the optimal values and track the time-varying statistics of the input signal during the steady state time. In order to analyse the performance of adaptive filters, the behaviour of optimal and adaptive coefficients as well as the resulting output error signals need to be carefully studied. Frequency modulated (FM) input signals in noise are a well-known class of nonstationary random processes with time-varying spectra. They possess a structure which facilitates the theoretical analysis and are also encountered in many real applications. In investigating the behaviour of adaptive filters tracking linear FM signals, a great effort has been devoted to transversal filters [9], [1]. However, an alternative structure is the lattice filter with its attractive properties. Some of these properties include high convergence speed, easy computations, less sensitivity to eigenvalues spread, ease of implementations, and providing a Gram-Schmidt type of orthogonali-sation of the input signal [8].
14 schema:editor Nda776e5079234773b5b22fd25a6ecc2d
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N3fa480c376a042fcb167f30ebb934386
19 schema:name Tracking Behaviour of Lattice Filters for Linear and Quadratic FM Signals
20 schema:pagination 207-214
21 schema:productId N4a1a2e8b19a640b68aa1dae2671da6f8
22 N76c6e73c01bf434f9a43cab33cfcc2f5
23 N85d1961cae52463dab97ab69355ded2c
24 schema:publisher N747b11a53ff947e788de7d47f9e4740d
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050893872
26 https://doi.org/10.1007/978-1-4615-6119-4_23
27 schema:sdDatePublished 2019-04-15T18:14
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N1aecf461ba6a477d902089ddcc6335ff
30 schema:url http://link.springer.com/10.1007/978-1-4615-6119-4_23
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N1aecf461ba6a477d902089ddcc6335ff schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N26eac23527cb42f795d3ea83fcd045d5 schema:familyName Honary
37 schema:givenName Bahram
38 rdf:type schema:Person
39 N3614539aeeeb4fa19ad02b7069f2df3b schema:familyName Wysocki
40 schema:givenName Tadeusz
41 rdf:type schema:Person
42 N367ceeb405d643f7aef130bc4fb00db3 schema:familyName Razavi
43 schema:givenName Hashem
44 rdf:type schema:Person
45 N3fa480c376a042fcb167f30ebb934386 schema:isbn 978-1-4613-7804-4
46 978-1-4615-6119-4
47 schema:name Digital Signal Processing for Communication Systems
48 rdf:type schema:Book
49 N4a1a2e8b19a640b68aa1dae2671da6f8 schema:name dimensions_id
50 schema:value pub.1050893872
51 rdf:type schema:PropertyValue
52 N53014e5041b749cb9aefcb6f260df80d rdf:first N26eac23527cb42f795d3ea83fcd045d5
53 rdf:rest rdf:nil
54 N5c3161b4b9e44331937497bf5ef179ec rdf:first N367ceeb405d643f7aef130bc4fb00db3
55 rdf:rest N53014e5041b749cb9aefcb6f260df80d
56 N6311f23ea1d644b0ad3942afc27eedfa rdf:first sg:person.0715720670.50
57 rdf:rest Nf2d4f933f8254c68b58ac7464f62c45d
58 N747b11a53ff947e788de7d47f9e4740d schema:location Boston, MA
59 schema:name Springer US
60 rdf:type schema:Organisation
61 N76c6e73c01bf434f9a43cab33cfcc2f5 schema:name readcube_id
62 schema:value f270cc1a84a04e4af7f6717a76a844996005f15b555eff1144992383d1ebfa07
63 rdf:type schema:PropertyValue
64 N85d1961cae52463dab97ab69355ded2c schema:name doi
65 schema:value 10.1007/978-1-4615-6119-4_23
66 rdf:type schema:PropertyValue
67 Nbab40949bceb4ec3a2ba9a7e5d3cdab3 rdf:first sg:person.013316510015.38
68 rdf:rest N6311f23ea1d644b0ad3942afc27eedfa
69 Nbd99aa70c2b64f94b995ecd6e6752a48 rdf:first sg:person.013641142252.91
70 rdf:rest Nbab40949bceb4ec3a2ba9a7e5d3cdab3
71 Nda776e5079234773b5b22fd25a6ecc2d rdf:first N3614539aeeeb4fa19ad02b7069f2df3b
72 rdf:rest N5c3161b4b9e44331937497bf5ef179ec
73 Nf2d4f933f8254c68b58ac7464f62c45d rdf:first sg:person.010146373533.19
74 rdf:rest rdf:nil
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
79 schema:name Statistics
80 rdf:type schema:DefinedTerm
81 sg:person.010146373533.19 schema:affiliation https://www.grid.ac/institutes/grid.1024.7
82 schema:familyName Deriche
83 schema:givenName M.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010146373533.19
85 rdf:type schema:Person
86 sg:person.013316510015.38 schema:affiliation https://www.grid.ac/institutes/grid.1024.7
87 schema:familyName Zoubir
88 schema:givenName A. M.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316510015.38
90 rdf:type schema:Person
91 sg:person.013641142252.91 schema:affiliation https://www.grid.ac/institutes/grid.1024.7
92 schema:familyName Kahaei
93 schema:givenName M. H.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013641142252.91
95 rdf:type schema:Person
96 sg:person.0715720670.50 schema:affiliation https://www.grid.ac/institutes/grid.1024.7
97 schema:familyName Boashash
98 schema:givenName B.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715720670.50
100 rdf:type schema:Person
101 https://doi.org/10.1109/18.75269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061100943
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1109/5.135378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061178872
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/78.301832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228760
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/78.80878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061230938
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/proc.1976.10286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061443393
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/tassp.1975.1162662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061518072
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1109/tcs.1981.1085016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061563465
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.1024.7 schema:alternateName Queensland University of Technology
116 schema:name Signal Processing Research Centre, QUT, GPO Box 2434, Brisbane, Q 4001, Australia
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...