On Covariant Instruments in Quantum Measurement Theory View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

A. S. Holevo

ABSTRACT

A convenient representation for c.p. instruments on B(ℌ) is suggested, similar to the Stinespring-Kraus representation for c.p. maps, however involving possibly nonclosable unbounded operators. The structure of c.p. instruments, covariant with respect to one-dimensional rotations, describing angle (phase) measurements, is studied in detail.

PAGES

223-232

References to SciGraph publications

  • 1989. Limit theorems for repeated measurements and continuous measurement processes in QUANTUM PROBABILITY AND APPLICATIONS IV
  • 1995. Mathematical Characterizations of Measurement Statistics in QUANTUM COMMUNICATIONS AND MEASUREMENT
  • 1989. Realization of Measurement and the Standard Quantum Limit in SQUEEZED AND NONCLASSICAL LIGHT
  • Book

    TITLE

    Quantum Communication, Computing, and Measurement

    ISBN

    978-1-4613-7716-0
    978-1-4615-5923-8

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-1-4615-5923-8_24

    DOI

    http://dx.doi.org/10.1007/978-1-4615-5923-8_24

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013185138


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Steklov Mathematical Institute", 
              "id": "https://www.grid.ac/institutes/grid.426543.2", 
              "name": [
                "Steklov Mathematical Institute, Vavilova 42, 117966, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Holevo", 
            "givenName": "A. S.", 
            "id": "sg:person.012742037634.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4899-1391-3_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042334983", 
              "https://doi.org/10.1007/978-1-4899-1391-3_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-6574-8_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043172891", 
              "https://doi.org/10.1007/978-1-4757-6574-8_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0083555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046493831", 
              "https://doi.org/10.1007/bfb0083555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.526000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058103019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.527179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058104198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/im1987v028n01abeh000872", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058167310"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1997", 
        "datePublishedReg": "1997-01-01", 
        "description": "A convenient representation for c.p. instruments on B(\u210c) is suggested, similar to the Stinespring-Kraus representation for c.p. maps, however involving possibly nonclosable unbounded operators. The structure of c.p. instruments, covariant with respect to one-dimensional rotations, describing angle (phase) measurements, is studied in detail.", 
        "editor": [
          {
            "familyName": "Hirota", 
            "givenName": "O.", 
            "type": "Person"
          }, 
          {
            "familyName": "Holevo", 
            "givenName": "A. S.", 
            "type": "Person"
          }, 
          {
            "familyName": "Caves", 
            "givenName": "C. M.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-1-4615-5923-8_24", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-1-4613-7716-0", 
            "978-1-4615-5923-8"
          ], 
          "name": "Quantum Communication, Computing, and Measurement", 
          "type": "Book"
        }, 
        "name": "On Covariant Instruments in Quantum Measurement Theory", 
        "pagination": "223-232", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013185138"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-1-4615-5923-8_24"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3ecf5205896fa47c219dd77d0e7cc108c675473495fa1d7d150e3901aa2373f6"
            ]
          }
        ], 
        "publisher": {
          "location": "Boston, MA", 
          "name": "Springer US", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-1-4615-5923-8_24", 
          "https://app.dimensions.ai/details/publication/pub.1013185138"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T09:10", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000001.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-1-4615-5923-8_24"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-5923-8_24'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-5923-8_24'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-5923-8_24'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-5923-8_24'


     

    This table displays all metadata directly associated to this object as RDF triples.

    96 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-1-4615-5923-8_24 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author Nc983166506674f6589a77a3aaa223b9c
    4 schema:citation sg:pub.10.1007/978-1-4757-6574-8_20
    5 sg:pub.10.1007/978-1-4899-1391-3_11
    6 sg:pub.10.1007/bfb0083555
    7 https://doi.org/10.1063/1.526000
    8 https://doi.org/10.1063/1.527179
    9 https://doi.org/10.1070/im1987v028n01abeh000872
    10 schema:datePublished 1997
    11 schema:datePublishedReg 1997-01-01
    12 schema:description A convenient representation for c.p. instruments on B(ℌ) is suggested, similar to the Stinespring-Kraus representation for c.p. maps, however involving possibly nonclosable unbounded operators. The structure of c.p. instruments, covariant with respect to one-dimensional rotations, describing angle (phase) measurements, is studied in detail.
    13 schema:editor N355a078c64b141a88cea65850cd134f5
    14 schema:genre chapter
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N6149081c5f1d4bc1857f82ad329373e7
    18 schema:name On Covariant Instruments in Quantum Measurement Theory
    19 schema:pagination 223-232
    20 schema:productId N0ab94874a046473eac47b061a4ad5957
    21 N880e129e76024386af6d0d379a071b74
    22 Nda3d0909e6b34d9084f877eaa8c6ed86
    23 schema:publisher N00412f28570b447c8269220d7489df26
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013185138
    25 https://doi.org/10.1007/978-1-4615-5923-8_24
    26 schema:sdDatePublished 2019-04-16T09:10
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N85dfda42a43640b3bd94cb77542c2b41
    29 schema:url https://link.springer.com/10.1007%2F978-1-4615-5923-8_24
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset chapters
    32 rdf:type schema:Chapter
    33 N00412f28570b447c8269220d7489df26 schema:location Boston, MA
    34 schema:name Springer US
    35 rdf:type schema:Organisation
    36 N0ab94874a046473eac47b061a4ad5957 schema:name doi
    37 schema:value 10.1007/978-1-4615-5923-8_24
    38 rdf:type schema:PropertyValue
    39 N298e4d756ec04a03a5eeb66733893116 rdf:first N9563bfc5cd7049f48b1fb7d6490fbc71
    40 rdf:rest rdf:nil
    41 N355a078c64b141a88cea65850cd134f5 rdf:first N5f81953f7e0f4c6aa94cb0951d5a1331
    42 rdf:rest Nf2a27ff330584cf8a2ba237db61f998a
    43 N5f81953f7e0f4c6aa94cb0951d5a1331 schema:familyName Hirota
    44 schema:givenName O.
    45 rdf:type schema:Person
    46 N6149081c5f1d4bc1857f82ad329373e7 schema:isbn 978-1-4613-7716-0
    47 978-1-4615-5923-8
    48 schema:name Quantum Communication, Computing, and Measurement
    49 rdf:type schema:Book
    50 N85dfda42a43640b3bd94cb77542c2b41 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N880e129e76024386af6d0d379a071b74 schema:name readcube_id
    53 schema:value 3ecf5205896fa47c219dd77d0e7cc108c675473495fa1d7d150e3901aa2373f6
    54 rdf:type schema:PropertyValue
    55 N9563bfc5cd7049f48b1fb7d6490fbc71 schema:familyName Caves
    56 schema:givenName C. M.
    57 rdf:type schema:Person
    58 Nc983166506674f6589a77a3aaa223b9c rdf:first sg:person.012742037634.56
    59 rdf:rest rdf:nil
    60 Nda3d0909e6b34d9084f877eaa8c6ed86 schema:name dimensions_id
    61 schema:value pub.1013185138
    62 rdf:type schema:PropertyValue
    63 Ne3f94dcbf9544bcfb6235077b3e8f4bd schema:familyName Holevo
    64 schema:givenName A. S.
    65 rdf:type schema:Person
    66 Nf2a27ff330584cf8a2ba237db61f998a rdf:first Ne3f94dcbf9544bcfb6235077b3e8f4bd
    67 rdf:rest N298e4d756ec04a03a5eeb66733893116
    68 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Physical Sciences
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Other Physical Sciences
    73 rdf:type schema:DefinedTerm
    74 sg:person.012742037634.56 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
    75 schema:familyName Holevo
    76 schema:givenName A. S.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012742037634.56
    78 rdf:type schema:Person
    79 sg:pub.10.1007/978-1-4757-6574-8_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043172891
    80 https://doi.org/10.1007/978-1-4757-6574-8_20
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/978-1-4899-1391-3_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042334983
    83 https://doi.org/10.1007/978-1-4899-1391-3_11
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bfb0083555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046493831
    86 https://doi.org/10.1007/bfb0083555
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1063/1.526000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058103019
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1063/1.527179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058104198
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1070/im1987v028n01abeh000872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058167310
    93 rdf:type schema:CreativeWork
    94 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
    95 schema:name Steklov Mathematical Institute, Vavilova 42, 117966, Moscow, Russia
    96 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...