Applications of Self-Interaction Correction to Localized States in Solids View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1999

AUTHORS

Z. Szotek , W. M. Temmerman , A. Svane , H. Winter , S. V. Beiden , G. A. Gehring , S. L. Dudarev , A. P. Sutton

ABSTRACT

Density Functional Theory provides an exact mapping of a many-body electron problem which occurs in solids onto a one-electron problem1. Instead of considering, for N interacting electrons in an external potential u(r), the 3N-dimensional Schrödinger equation for the wavefunction Ψ(r1, r2, r3, rN), DFT expresses this many-body problem in terms of the electronic density distribution n(r) and a universal exchange and correlation functional of the density, Exc[n(r)].The task of solving the many-body problem is then reduced to finding sufficiently accurate expressions for Exc[n(r)] and then solving the relevant one-electron Schrodinger equation with an effective potential of which the exchange-correlation potential is a prominent part. Surprisingly, DFT has turned out to be a powerful and extremely successful scheme of calculating electronic properties of solids. This is owing to a simple and practical approximation for Exc[n(r)] , the local density approximation, where the exchange and correlation potential, is approximated by the exchange-correlation energy per particle, exc(n), of a homogeneous electron gas of density n.This simple function of density can be very precisely calculated and allows for an accurate determination of the ground state energies and charge densities of any system1. More... »

PAGES

207-212

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-4873-7_23

DOI

http://dx.doi.org/10.1007/978-1-4615-4873-7_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030694720


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Daresbury Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.482271.a", 
          "name": [
            "Daresbury Laboratory, WA4 4AD, Warrington, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szotek", 
        "givenName": "Z.", 
        "id": "sg:person.01176325102.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176325102.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daresbury Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.482271.a", 
          "name": [
            "Daresbury Laboratory, WA4 4AD, Warrington, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Temmerman", 
        "givenName": "W. M.", 
        "id": "sg:person.015343736027.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343736027.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Institute of Physics and Astronomy, University of Aarhus, DK-8000, Aarhus C, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Svane", 
        "givenName": "A.", 
        "id": "sg:person.01131602076.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131602076.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karlsruhe Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Forschungszentrum Karlsruhe, INFP, 3640, PostfachKarlsruhe, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winter", 
        "givenName": "H.", 
        "id": "sg:person.013607556034.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607556034.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Physics Department, University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beiden", 
        "givenName": "S. V.", 
        "id": "sg:person.01076305126.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076305126.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sheffield", 
          "id": "https://www.grid.ac/institutes/grid.11835.3e", 
          "name": [
            "Physics Department, University of Sheffield, Sheffield, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gehring", 
        "givenName": "G. A.", 
        "id": "sg:person.01272633770.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272633770.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Materials, University of Oxford, Parks Road, OX1 3PH, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dudarev", 
        "givenName": "S. L.", 
        "id": "sg:person.01130132527.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130132527.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Materials, University of Oxford, Parks Road, OX1 3PH, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sutton", 
        "givenName": "A. P.", 
        "id": "sg:person.016310616041.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016310616041.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0038-1098(97)00002-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051698268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.4029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.4029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.r5467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060579033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.r5467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060579033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.4275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.4275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.2339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.2339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.3970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.3970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.52.3514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063107390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.52.3514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063107390"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999", 
    "datePublishedReg": "1999-01-01", 
    "description": "Density Functional Theory provides an exact mapping of a many-body electron problem which occurs in solids onto a one-electron problem1. Instead of considering, for N interacting electrons in an external potential u(r), the 3N-dimensional Schr\u00f6dinger equation for the wavefunction \u03a8(r1, r2, r3, rN), DFT expresses this many-body problem in terms of the electronic density distribution n(r) and a universal exchange and correlation functional of the density, Exc[n(r)].The task of solving the many-body problem is then reduced to finding sufficiently accurate expressions for Exc[n(r)] and then solving the relevant one-electron Schrodinger equation with an effective potential of which the exchange-correlation potential is a prominent part. Surprisingly, DFT has turned out to be a powerful and extremely successful scheme of calculating electronic properties of solids. This is owing to a simple and practical approximation for Exc[n(r)] , the local density approximation, where the exchange and correlation potential, is approximated by the exchange-correlation energy per particle, exc(n), of a homogeneous electron gas of density n.This simple function of density can be very precisely calculated and allows for an accurate determination of the ground state energies and charge densities of any system1.", 
    "editor": [
      {
        "familyName": "Allan", 
        "givenName": "R. J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Guest", 
        "givenName": "M. F.", 
        "type": "Person"
      }, 
      {
        "familyName": "Simpson", 
        "givenName": "A. D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Henty", 
        "givenName": "D. S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Nicole", 
        "givenName": "D. A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-4873-7_23", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-7211-0", 
        "978-1-4615-4873-7"
      ], 
      "name": "High-Performance Computing", 
      "type": "Book"
    }, 
    "name": "Applications of Self-Interaction Correction to Localized States in Solids", 
    "pagination": "207-212", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030694720"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-4873-7_23"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9239ce1436602bf60b44855fd25fc89bce79ae32de25aa24e678e48e3057e121"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-4873-7_23", 
      "https://app.dimensions.ai/details/publication/pub.1030694720"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68944_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4615-4873-7_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4873-7_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4873-7_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4873-7_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4873-7_23'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-4873-7_23 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N7a985a34595d468f8211d346bf76ea92
4 schema:citation https://doi.org/10.1016/s0038-1098(97)00002-1
5 https://doi.org/10.1103/physrevb.44.943
6 https://doi.org/10.1103/physrevb.47.4029
7 https://doi.org/10.1103/physrevb.52.r5467
8 https://doi.org/10.1103/physrevb.53.4275
9 https://doi.org/10.1103/physrevlett.53.2339
10 https://doi.org/10.1103/physrevlett.65.1148
11 https://doi.org/10.1103/physrevlett.79.3970
12 https://doi.org/10.1143/jpsj.52.3514
13 schema:datePublished 1999
14 schema:datePublishedReg 1999-01-01
15 schema:description Density Functional Theory provides an exact mapping of a many-body electron problem which occurs in solids onto a one-electron problem1. Instead of considering, for N interacting electrons in an external potential u(r), the 3N-dimensional Schrödinger equation for the wavefunction Ψ(r1, r2, r3, rN), DFT expresses this many-body problem in terms of the electronic density distribution n(r) and a universal exchange and correlation functional of the density, Exc[n(r)].The task of solving the many-body problem is then reduced to finding sufficiently accurate expressions for Exc[n(r)] and then solving the relevant one-electron Schrodinger equation with an effective potential of which the exchange-correlation potential is a prominent part. Surprisingly, DFT has turned out to be a powerful and extremely successful scheme of calculating electronic properties of solids. This is owing to a simple and practical approximation for Exc[n(r)] , the local density approximation, where the exchange and correlation potential, is approximated by the exchange-correlation energy per particle, exc(n), of a homogeneous electron gas of density n.This simple function of density can be very precisely calculated and allows for an accurate determination of the ground state energies and charge densities of any system1.
16 schema:editor N23e101d3834548999cba17f348c9d9f6
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N7ffa97d09a834ad496d18a99c569a759
21 schema:name Applications of Self-Interaction Correction to Localized States in Solids
22 schema:pagination 207-212
23 schema:productId N6ec6e2fca87c4300aead40bce872611d
24 N9848cfaed7ad4200b311596ab12bce02
25 Nfa6f3b9048ae47fd8540ba07948474df
26 schema:publisher Nc562bac15f884a0ba7fc4f7e9f1397ba
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030694720
28 https://doi.org/10.1007/978-1-4615-4873-7_23
29 schema:sdDatePublished 2019-04-16T08:55
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N35de8ec5f1dd4a7b93e4c9356f00d445
32 schema:url https://link.springer.com/10.1007%2F978-1-4615-4873-7_23
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N0e09be86d0a84b38b2475b31174212d0 rdf:first sg:person.013607556034.59
37 rdf:rest N53352166cf8647aeac88def038900bfa
38 N23e101d3834548999cba17f348c9d9f6 rdf:first N778c1d43c9594a55a34166808068d51e
39 rdf:rest N829caa8bd5164370a5a4ac804b07a362
40 N35de8ec5f1dd4a7b93e4c9356f00d445 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N42af90b4f1cd4440b71c9c9aa31e84c5 rdf:first Naf67a72c80ef4e789467800dd88f5e75
43 rdf:rest N529fb0540a0741319760c9f43d69a22a
44 N529fb0540a0741319760c9f43d69a22a rdf:first N72a2779f760544d59f77acae4c0e0643
45 rdf:rest rdf:nil
46 N53352166cf8647aeac88def038900bfa rdf:first sg:person.01076305126.42
47 rdf:rest N7a2149ad670b4210ad47904842b7dd49
48 N5a8c561fb59d4ceab1548aa68b074f01 rdf:first sg:person.016310616041.90
49 rdf:rest rdf:nil
50 N6ec6e2fca87c4300aead40bce872611d schema:name doi
51 schema:value 10.1007/978-1-4615-4873-7_23
52 rdf:type schema:PropertyValue
53 N72a2779f760544d59f77acae4c0e0643 schema:familyName Nicole
54 schema:givenName D. A.
55 rdf:type schema:Person
56 N763feb600b2a41c6b340948ee24011b6 schema:familyName Simpson
57 schema:givenName A. D.
58 rdf:type schema:Person
59 N778c1d43c9594a55a34166808068d51e schema:familyName Allan
60 schema:givenName R. J.
61 rdf:type schema:Person
62 N7a2149ad670b4210ad47904842b7dd49 rdf:first sg:person.01272633770.29
63 rdf:rest Ne659c1acd5694616bb9ed61e393ac3bd
64 N7a985a34595d468f8211d346bf76ea92 rdf:first sg:person.01176325102.44
65 rdf:rest N9d3c980a8b044c0dafb88cd3d6886841
66 N7ffa97d09a834ad496d18a99c569a759 schema:isbn 978-1-4613-7211-0
67 978-1-4615-4873-7
68 schema:name High-Performance Computing
69 rdf:type schema:Book
70 N829caa8bd5164370a5a4ac804b07a362 rdf:first N9e027410ecdd476dbac303bfec933aaf
71 rdf:rest Ncea2ec408ed2452caf354321695c4d4d
72 N90d965631eaf47c09b2d165d29dc544a rdf:first sg:person.01131602076.77
73 rdf:rest N0e09be86d0a84b38b2475b31174212d0
74 N9848cfaed7ad4200b311596ab12bce02 schema:name dimensions_id
75 schema:value pub.1030694720
76 rdf:type schema:PropertyValue
77 N9d3c980a8b044c0dafb88cd3d6886841 rdf:first sg:person.015343736027.67
78 rdf:rest N90d965631eaf47c09b2d165d29dc544a
79 N9e027410ecdd476dbac303bfec933aaf schema:familyName Guest
80 schema:givenName M. F.
81 rdf:type schema:Person
82 Naf67a72c80ef4e789467800dd88f5e75 schema:familyName Henty
83 schema:givenName D. S.
84 rdf:type schema:Person
85 Nc562bac15f884a0ba7fc4f7e9f1397ba schema:location Boston, MA
86 schema:name Springer US
87 rdf:type schema:Organisation
88 Ncea2ec408ed2452caf354321695c4d4d rdf:first N763feb600b2a41c6b340948ee24011b6
89 rdf:rest N42af90b4f1cd4440b71c9c9aa31e84c5
90 Ne659c1acd5694616bb9ed61e393ac3bd rdf:first sg:person.01130132527.11
91 rdf:rest N5a8c561fb59d4ceab1548aa68b074f01
92 Nfa6f3b9048ae47fd8540ba07948474df schema:name readcube_id
93 schema:value 9239ce1436602bf60b44855fd25fc89bce79ae32de25aa24e678e48e3057e121
94 rdf:type schema:PropertyValue
95 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
99 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
100 rdf:type schema:DefinedTerm
101 sg:person.01076305126.42 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
102 schema:familyName Beiden
103 schema:givenName S. V.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076305126.42
105 rdf:type schema:Person
106 sg:person.01130132527.11 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
107 schema:familyName Dudarev
108 schema:givenName S. L.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130132527.11
110 rdf:type schema:Person
111 sg:person.01131602076.77 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
112 schema:familyName Svane
113 schema:givenName A.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131602076.77
115 rdf:type schema:Person
116 sg:person.01176325102.44 schema:affiliation https://www.grid.ac/institutes/grid.482271.a
117 schema:familyName Szotek
118 schema:givenName Z.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176325102.44
120 rdf:type schema:Person
121 sg:person.01272633770.29 schema:affiliation https://www.grid.ac/institutes/grid.11835.3e
122 schema:familyName Gehring
123 schema:givenName G. A.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272633770.29
125 rdf:type schema:Person
126 sg:person.013607556034.59 schema:affiliation https://www.grid.ac/institutes/grid.7892.4
127 schema:familyName Winter
128 schema:givenName H.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013607556034.59
130 rdf:type schema:Person
131 sg:person.015343736027.67 schema:affiliation https://www.grid.ac/institutes/grid.482271.a
132 schema:familyName Temmerman
133 schema:givenName W. M.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343736027.67
135 rdf:type schema:Person
136 sg:person.016310616041.90 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
137 schema:familyName Sutton
138 schema:givenName A. P.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016310616041.90
140 rdf:type schema:Person
141 https://doi.org/10.1016/s0038-1098(97)00002-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051698268
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.44.943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060560298
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.47.4029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566056
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.52.r5467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060579033
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.53.4275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060580248
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.53.2339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790776
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.65.1148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801078
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.79.3970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816221
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1143/jpsj.52.3514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063107390
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.11835.3e schema:alternateName University of Sheffield
160 schema:name Physics Department, University of Sheffield, Sheffield, UK
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.482271.a schema:alternateName Daresbury Laboratory
163 schema:name Daresbury Laboratory, WA4 4AD, Warrington, UK
164 rdf:type schema:Organization
165 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
166 schema:name Department of Materials, University of Oxford, Parks Road, OX1 3PH, Oxford, UK
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.7048.b schema:alternateName Aarhus University
169 schema:name Institute of Physics and Astronomy, University of Aarhus, DK-8000, Aarhus C, Denmark
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.7892.4 schema:alternateName Karlsruhe Institute of Technology
172 schema:name Forschungszentrum Karlsruhe, INFP, 3640, PostfachKarlsruhe, Germany
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...