A Biological Mechanism for Synaptic Stability in Developing Neocortical Circuits View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

Niraj S. Desai , Kenneth R. Leslie , Sacha B. Nelson , Gina G. Turrigiano

ABSTRACT

A common feature of both learning and development is that the number and strengths of synaptic connections can change dramatically in a relatively short period of time. Precisely how such changes give rise to functioning and flexible circuits remains an outstanding, unanswered question in neuroscience. One idea, which enjoys widespread support, is that correlation-based rules of synaptic modification are responsible for at least some forms of learning and activity-dependent development in the nervous system.1,2 By these rules, correlated activity in presynaptic and postsynaptic cells leads to an increase in synaptic strength, while uncorrelated activity leads to a decrease in strength. This sort of Hebbian synaptic modification is enormously attractive for a number of reasons. It gives neural circuits great flexibility, and suggests a way for them to wire themselves without extensive genetic instructions. It is also backed by experiments in the hippocampus and neocortex that demonstrate that real synapses can actually follow such rules — namely, in long-term potentiation (LTP) and depression (LTD).2 More... »

PAGES

349-354

Book

TITLE

Computational Neuroscience

ISBN

978-1-4613-7190-8
978-1-4615-4831-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-4831-7_58

DOI

http://dx.doi.org/10.1007/978-1-4615-4831-7_58

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031673283


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biology and Center for Complex Systems, Brandeis University, 02254-9110, Waltham, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.253264.4", 
          "name": [
            "Department of Biology and Center for Complex Systems, Brandeis University, 02254-9110, Waltham, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Desai", 
        "givenName": "Niraj S.", 
        "id": "sg:person.01160341344.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160341344.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biology and Center for Complex Systems, Brandeis University, 02254-9110, Waltham, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.253264.4", 
          "name": [
            "Department of Biology and Center for Complex Systems, Brandeis University, 02254-9110, Waltham, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leslie", 
        "givenName": "Kenneth R.", 
        "id": "sg:person.01313134201.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313134201.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biology and Center for Complex Systems, Brandeis University, 02254-9110, Waltham, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.253264.4", 
          "name": [
            "Department of Biology and Center for Complex Systems, Brandeis University, 02254-9110, Waltham, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nelson", 
        "givenName": "Sacha B.", 
        "id": "sg:person.01114173452.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114173452.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biology and Center for Complex Systems, Brandeis University, 02254-9110, Waltham, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.253264.4", 
          "name": [
            "Department of Biology and Center for Complex Systems, Brandeis University, 02254-9110, Waltham, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turrigiano", 
        "givenName": "Gina G.", 
        "id": "sg:person.01214150062.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214150062.16"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998", 
    "datePublishedReg": "1998-01-01", 
    "description": "A common feature of both learning and development is that the number and strengths of synaptic connections can change dramatically in a relatively short period of time. Precisely how such changes give rise to functioning and flexible circuits remains an outstanding, unanswered question in neuroscience. One idea, which enjoys widespread support, is that correlation-based rules of synaptic modification are responsible for at least some forms of learning and activity-dependent development in the nervous system.1,2 By these rules, correlated activity in presynaptic and postsynaptic cells leads to an increase in synaptic strength, while uncorrelated activity leads to a decrease in strength. This sort of Hebbian synaptic modification is enormously attractive for a number of reasons. It gives neural circuits great flexibility, and suggests a way for them to wire themselves without extensive genetic instructions. It is also backed by experiments in the hippocampus and neocortex that demonstrate that real synapses can actually follow such rules \u2014 namely, in long-term potentiation (LTP) and depression (LTD).2", 
    "editor": [
      {
        "familyName": "Bower", 
        "givenName": "James M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-4831-7_58", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-7190-8", 
        "978-1-4615-4831-7"
      ], 
      "name": "Computational Neuroscience", 
      "type": "Book"
    }, 
    "keywords": [
      "long-term potentiation", 
      "synaptic modification", 
      "activity-dependent development", 
      "correlation-based rules", 
      "synaptic stability", 
      "nervous system", 
      "postsynaptic cell", 
      "synaptic connections", 
      "synaptic strength", 
      "neocortical circuits", 
      "correlated activity", 
      "uncorrelated activity", 
      "Hebbian synaptic modification", 
      "biological mechanisms", 
      "unanswered questions", 
      "hippocampus", 
      "neocortex", 
      "potentiation", 
      "real synapses", 
      "synapses", 
      "forms of learning", 
      "depression", 
      "common feature", 
      "such changes", 
      "short period", 
      "activity", 
      "cells", 
      "number of reasons", 
      "period", 
      "decrease", 
      "development", 
      "number", 
      "increase", 
      "widespread support", 
      "neuroscience", 
      "changes", 
      "mechanism", 
      "modification", 
      "support", 
      "reasons", 
      "time", 
      "features", 
      "rise", 
      "genetic instructions", 
      "questions", 
      "form", 
      "instruction", 
      "strength", 
      "circuit", 
      "system", 
      "connection", 
      "learning", 
      "experiments", 
      "way", 
      "greater flexibility", 
      "stability", 
      "sort", 
      "rules", 
      "flexibility", 
      "idea", 
      "such rules", 
      "flexible circuits"
    ], 
    "name": "A Biological Mechanism for Synaptic Stability in Developing Neocortical Circuits", 
    "pagination": "349-354", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031673283"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-4831-7_58"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-4831-7_58", 
      "https://app.dimensions.ai/details/publication/pub.1031673283"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_182.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4615-4831-7_58"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4831-7_58'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4831-7_58'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4831-7_58'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4831-7_58'


 

This table displays all metadata directly associated to this object as RDF triples.

142 TRIPLES      22 PREDICATES      87 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-4831-7_58 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Ne14e110890a541e0815a059b758c3c24
4 schema:datePublished 1998
5 schema:datePublishedReg 1998-01-01
6 schema:description A common feature of both learning and development is that the number and strengths of synaptic connections can change dramatically in a relatively short period of time. Precisely how such changes give rise to functioning and flexible circuits remains an outstanding, unanswered question in neuroscience. One idea, which enjoys widespread support, is that correlation-based rules of synaptic modification are responsible for at least some forms of learning and activity-dependent development in the nervous system.1,2 By these rules, correlated activity in presynaptic and postsynaptic cells leads to an increase in synaptic strength, while uncorrelated activity leads to a decrease in strength. This sort of Hebbian synaptic modification is enormously attractive for a number of reasons. It gives neural circuits great flexibility, and suggests a way for them to wire themselves without extensive genetic instructions. It is also backed by experiments in the hippocampus and neocortex that demonstrate that real synapses can actually follow such rules — namely, in long-term potentiation (LTP) and depression (LTD).2
7 schema:editor N79927325b659439f87fa19f197585cc5
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N58ce19f1cd4d4e029aaaaa89d7e42816
11 schema:keywords Hebbian synaptic modification
12 activity
13 activity-dependent development
14 biological mechanisms
15 cells
16 changes
17 circuit
18 common feature
19 connection
20 correlated activity
21 correlation-based rules
22 decrease
23 depression
24 development
25 experiments
26 features
27 flexibility
28 flexible circuits
29 form
30 forms of learning
31 genetic instructions
32 greater flexibility
33 hippocampus
34 idea
35 increase
36 instruction
37 learning
38 long-term potentiation
39 mechanism
40 modification
41 neocortex
42 neocortical circuits
43 nervous system
44 neuroscience
45 number
46 number of reasons
47 period
48 postsynaptic cell
49 potentiation
50 questions
51 real synapses
52 reasons
53 rise
54 rules
55 short period
56 sort
57 stability
58 strength
59 such changes
60 such rules
61 support
62 synapses
63 synaptic connections
64 synaptic modification
65 synaptic stability
66 synaptic strength
67 system
68 time
69 unanswered questions
70 uncorrelated activity
71 way
72 widespread support
73 schema:name A Biological Mechanism for Synaptic Stability in Developing Neocortical Circuits
74 schema:pagination 349-354
75 schema:productId N48ce008d6d224f48a92caf71f0a61d06
76 N55f10690ca674b8487b2a8c26db288b1
77 schema:publisher Nd8083cd795464b389be4f0d32bd5722e
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031673283
79 https://doi.org/10.1007/978-1-4615-4831-7_58
80 schema:sdDatePublished 2022-11-24T21:12
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N2addf9e738ac4e42ae7e73fec0b887be
83 schema:url https://doi.org/10.1007/978-1-4615-4831-7_58
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N2addf9e738ac4e42ae7e73fec0b887be schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N354bb95041674930898407752e31cbe1 rdf:first sg:person.01313134201.10
90 rdf:rest N60596aee276c40eab882775fd8c2c92e
91 N396abf3b3e8f43219ec21d6e267da723 rdf:first sg:person.01214150062.16
92 rdf:rest rdf:nil
93 N48ce008d6d224f48a92caf71f0a61d06 schema:name dimensions_id
94 schema:value pub.1031673283
95 rdf:type schema:PropertyValue
96 N55f10690ca674b8487b2a8c26db288b1 schema:name doi
97 schema:value 10.1007/978-1-4615-4831-7_58
98 rdf:type schema:PropertyValue
99 N58ce19f1cd4d4e029aaaaa89d7e42816 schema:isbn 978-1-4613-7190-8
100 978-1-4615-4831-7
101 schema:name Computational Neuroscience
102 rdf:type schema:Book
103 N60596aee276c40eab882775fd8c2c92e rdf:first sg:person.01114173452.11
104 rdf:rest N396abf3b3e8f43219ec21d6e267da723
105 N6f93017828514fa2933a49272c04a5ef schema:familyName Bower
106 schema:givenName James M.
107 rdf:type schema:Person
108 N79927325b659439f87fa19f197585cc5 rdf:first N6f93017828514fa2933a49272c04a5ef
109 rdf:rest rdf:nil
110 Nd8083cd795464b389be4f0d32bd5722e schema:name Springer Nature
111 rdf:type schema:Organisation
112 Ne14e110890a541e0815a059b758c3c24 rdf:first sg:person.01160341344.28
113 rdf:rest N354bb95041674930898407752e31cbe1
114 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
115 schema:name Medical and Health Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
118 schema:name Neurosciences
119 rdf:type schema:DefinedTerm
120 sg:person.01114173452.11 schema:affiliation grid-institutes:grid.253264.4
121 schema:familyName Nelson
122 schema:givenName Sacha B.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114173452.11
124 rdf:type schema:Person
125 sg:person.01160341344.28 schema:affiliation grid-institutes:grid.253264.4
126 schema:familyName Desai
127 schema:givenName Niraj S.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160341344.28
129 rdf:type schema:Person
130 sg:person.01214150062.16 schema:affiliation grid-institutes:grid.253264.4
131 schema:familyName Turrigiano
132 schema:givenName Gina G.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214150062.16
134 rdf:type schema:Person
135 sg:person.01313134201.10 schema:affiliation grid-institutes:grid.253264.4
136 schema:familyName Leslie
137 schema:givenName Kenneth R.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313134201.10
139 rdf:type schema:Person
140 grid-institutes:grid.253264.4 schema:alternateName Department of Biology and Center for Complex Systems, Brandeis University, 02254-9110, Waltham, MA, USA
141 schema:name Department of Biology and Center for Complex Systems, Brandeis University, 02254-9110, Waltham, MA, USA
142 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...