Safety Control of Completely Observed Markov Chains View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Aristotle Arapostathis , Ratnesh Kumar , Sekhar Tangirala

ABSTRACT

In this paper we introduce and study the notion of safety control of stochastic discrete event systems (DESs), modeled as controlled Markov chains. For non-stochastic DES’s, modeled by state machines or automata, safety is specified as a set of forbidden states, or equivalently by a binary valued vector that imposes an upper bound on the set of states permitted to be visited. We generalize this notion of safety to the setting of stochastic DESs by specifying it as an unit-interval valued vector that imposes an upper bound on the state probability distribution vector. Under the assumption of complete state observation, we identify (i) the set of all state feedback controllers that satisfy the safety requirement for any given safe initial state probability distribution, and (ii) the set of all safe initial state probability distributions for a given state feedback controller. More... »

PAGES

421-428

References to SciGraph publications

Book

TITLE

Discrete Event Systems

ISBN

978-1-4613-7025-3
978-1-4615-4493-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-4493-7_44

DOI

http://dx.doi.org/10.1007/978-1-4615-4493-7_44

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043766601


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Texas, 78012, Austin, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arapostathis", 
        "givenName": "Aristotle", 
        "id": "sg:person.010452426214.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010452426214.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Department of Electrical Engineering, University of Kentucky, 40506, Lexington, KY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Ratnesh", 
        "id": "sg:person.01047006204.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047006204.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Systems Engineering Department, Applied Research Laboratory, The Pennsylvania State University, 16802, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tangirala", 
        "givenName": "Sekhar", 
        "id": "sg:person.015717172622.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717172622.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1008271916548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005574726", 
          "https://doi.org/10.1023/a:1008271916548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.250512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061243552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.746254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061245843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0325013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062843937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.1998.758208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093449783"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "In this paper we introduce and study the notion of safety control of stochastic discrete event systems (DESs), modeled as controlled Markov chains. For non-stochastic DES\u2019s, modeled by state machines or automata, safety is specified as a set of forbidden states, or equivalently by a binary valued vector that imposes an upper bound on the set of states permitted to be visited. We generalize this notion of safety to the setting of stochastic DESs by specifying it as an unit-interval valued vector that imposes an upper bound on the state probability distribution vector. Under the assumption of complete state observation, we identify (i) the set of all state feedback controllers that satisfy the safety requirement for any given safe initial state probability distribution, and (ii) the set of all safe initial state probability distributions for a given state feedback controller.", 
    "editor": [
      {
        "familyName": "Boel", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "familyName": "Stremersch", 
        "givenName": "G.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-4493-7_44", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-7025-3", 
        "978-1-4615-4493-7"
      ], 
      "name": "Discrete Event Systems", 
      "type": "Book"
    }, 
    "name": "Safety Control of Completely Observed Markov Chains", 
    "pagination": "421-428", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043766601"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-4493-7_44"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d07a5a4cccbd98ad0f8749c402575444388a7a1aeda7f86a018afc8d11735409"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-4493-7_44", 
      "https://app.dimensions.ai/details/publication/pub.1043766601"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68980_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4615-4493-7_44"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4493-7_44'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4493-7_44'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4493-7_44'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4493-7_44'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-4493-7_44 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N811444c6002443439a0bcb377b42f038
4 schema:citation sg:pub.10.1023/a:1008271916548
5 https://doi.org/10.1109/9.250512
6 https://doi.org/10.1109/9.746254
7 https://doi.org/10.1109/cdc.1998.758208
8 https://doi.org/10.1137/0325013
9 schema:datePublished 2000
10 schema:datePublishedReg 2000-01-01
11 schema:description In this paper we introduce and study the notion of safety control of stochastic discrete event systems (DESs), modeled as controlled Markov chains. For non-stochastic DES’s, modeled by state machines or automata, safety is specified as a set of forbidden states, or equivalently by a binary valued vector that imposes an upper bound on the set of states permitted to be visited. We generalize this notion of safety to the setting of stochastic DESs by specifying it as an unit-interval valued vector that imposes an upper bound on the state probability distribution vector. Under the assumption of complete state observation, we identify (i) the set of all state feedback controllers that satisfy the safety requirement for any given safe initial state probability distribution, and (ii) the set of all safe initial state probability distributions for a given state feedback controller.
12 schema:editor N357608d496cc41959273759dc2bce43c
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N596aa0d5e10c4686bbd4367a3764179f
17 schema:name Safety Control of Completely Observed Markov Chains
18 schema:pagination 421-428
19 schema:productId N7af8007b800048dc885f165244beb4d9
20 N7dcc7655a8bb415abda6ec6e665967c8
21 Naf2182714ede47e5801d869bae0ed317
22 schema:publisher Ncfbd0e5839b949589195bdacf1a37b69
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043766601
24 https://doi.org/10.1007/978-1-4615-4493-7_44
25 schema:sdDatePublished 2019-04-16T08:59
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N454effd6cc0e46e99e97a8a1dacc2f88
28 schema:url https://link.springer.com/10.1007%2F978-1-4615-4493-7_44
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N32d857d70ee6428da8e8a2857e52e2c0 schema:familyName Boel
33 schema:givenName R.
34 rdf:type schema:Person
35 N357608d496cc41959273759dc2bce43c rdf:first N32d857d70ee6428da8e8a2857e52e2c0
36 rdf:rest N58a73ba1736a4609a3a048c72153487b
37 N454effd6cc0e46e99e97a8a1dacc2f88 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N58a73ba1736a4609a3a048c72153487b rdf:first Nedd65ae5a5f245ab93e385ce37dbc3a0
40 rdf:rest rdf:nil
41 N596aa0d5e10c4686bbd4367a3764179f schema:isbn 978-1-4613-7025-3
42 978-1-4615-4493-7
43 schema:name Discrete Event Systems
44 rdf:type schema:Book
45 N62b4c20af0084749b61411e989753874 rdf:first sg:person.01047006204.61
46 rdf:rest Ncf8f126d944643adb0b986b12f7d9065
47 N7af8007b800048dc885f165244beb4d9 schema:name doi
48 schema:value 10.1007/978-1-4615-4493-7_44
49 rdf:type schema:PropertyValue
50 N7dcc7655a8bb415abda6ec6e665967c8 schema:name dimensions_id
51 schema:value pub.1043766601
52 rdf:type schema:PropertyValue
53 N811444c6002443439a0bcb377b42f038 rdf:first sg:person.010452426214.19
54 rdf:rest N62b4c20af0084749b61411e989753874
55 Naf2182714ede47e5801d869bae0ed317 schema:name readcube_id
56 schema:value d07a5a4cccbd98ad0f8749c402575444388a7a1aeda7f86a018afc8d11735409
57 rdf:type schema:PropertyValue
58 Ncf8f126d944643adb0b986b12f7d9065 rdf:first sg:person.015717172622.67
59 rdf:rest rdf:nil
60 Ncfbd0e5839b949589195bdacf1a37b69 schema:location Boston, MA
61 schema:name Springer US
62 rdf:type schema:Organisation
63 Nedd65ae5a5f245ab93e385ce37dbc3a0 schema:familyName Stremersch
64 schema:givenName G.
65 rdf:type schema:Person
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
70 schema:name Statistics
71 rdf:type schema:DefinedTerm
72 sg:person.010452426214.19 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
73 schema:familyName Arapostathis
74 schema:givenName Aristotle
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010452426214.19
76 rdf:type schema:Person
77 sg:person.01047006204.61 schema:affiliation https://www.grid.ac/institutes/grid.266539.d
78 schema:familyName Kumar
79 schema:givenName Ratnesh
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047006204.61
81 rdf:type schema:Person
82 sg:person.015717172622.67 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
83 schema:familyName Tangirala
84 schema:givenName Sekhar
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015717172622.67
86 rdf:type schema:Person
87 sg:pub.10.1023/a:1008271916548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005574726
88 https://doi.org/10.1023/a:1008271916548
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1109/9.250512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061243552
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1109/9.746254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061245843
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1109/cdc.1998.758208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093449783
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1137/0325013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062843937
97 rdf:type schema:CreativeWork
98 https://www.grid.ac/institutes/grid.266539.d schema:alternateName University of Kentucky
99 schema:name Department of Electrical Engineering, University of Kentucky, 40506, Lexington, KY, USA
100 rdf:type schema:Organization
101 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
102 schema:name Systems Engineering Department, Applied Research Laboratory, The Pennsylvania State University, 16802, University Park, PA, USA
103 rdf:type schema:Organization
104 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
105 schema:name Department of Electrical and Computer Engineering, University of Texas, 78012, Austin, TX, USA
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...