Surface Photovoltage-Based Biosensor View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Yuji Murakami , Eiichi Tamiya , Hidekazu Uchida , Teruaki Katsube

ABSTRACT

The surface photovoltage (SPV) technique was first applied to a chemical sensor by Hafeman et al. in 1988.1 We applied the technique to immunosensors in 19902 and also investigated possible applications to various kinds of chemical sensors, including ion sensors,3 gas sensors,4 biosensors,5 and image sensors.6 These studies demonstrated various advantages of an SPV sensor over other chemical sensor: (1) the fabrication process is simple; (2) by multiplexing different light sources in different locations, the device can be a multisensor [light-addressable potentiometric sensors (LAPS)] without additional process complexity; and (3) encapsulation is easier and less critical. SPV also allows for flexibility in the signal processing method as it is based on ac measurements. For example, a differential measurement technique that we proposed made high-sensitive measurements possible by canceling out the common noise and drift component.3 These advantages also suggested that the SPV technique might be used to develop a new generation of chemical sensors, such as a highly integrated chemical and image sensor. More... »

PAGES

175-193

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-4181-3_10

DOI

http://dx.doi.org/10.1007/978-1-4615-4181-3_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036194297


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Materials Science, Japan Advanced Institute of Science and Technology, 923-12, Hokuriku, Tatsunokuchi, Ishikawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.444515.5", 
          "name": [
            "School of Materials Science, Japan Advanced Institute of Science and Technology, 923-12, Hokuriku, Tatsunokuchi, Ishikawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murakami", 
        "givenName": "Yuji", 
        "id": "sg:person.012353234132.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012353234132.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science, Japan Advanced Institute of Science and Technology, 923-12, Hokuriku, Tatsunokuchi, Ishikawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.444515.5", 
          "name": [
            "School of Materials Science, Japan Advanced Institute of Science and Technology, 923-12, Hokuriku, Tatsunokuchi, Ishikawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamiya", 
        "givenName": "Eiichi", 
        "id": "sg:person.01153333673.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153333673.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Information and Computer Science, Faculty of Engineering, Saitama University, 338, Urawa, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Department of Information and Computer Science, Faculty of Engineering, Saitama University, 338, Urawa, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uchida", 
        "givenName": "Hidekazu", 
        "id": "sg:person.012607413015.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012607413015.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Information and Computer Science, Faculty of Engineering, Saitama University, 338, Urawa, Saitama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.263023.6", 
          "name": [
            "Department of Information and Computer Science, Faculty of Engineering, Saitama University, 338, Urawa, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katsube", 
        "givenName": "Teruaki", 
        "id": "sg:person.010254024561.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010254024561.05"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "The surface photovoltage (SPV) technique was first applied to a chemical sensor by Hafeman et al. in 1988.1 We applied the technique to immunosensors in 19902 and also investigated possible applications to various kinds of chemical sensors, including ion sensors,3 gas sensors,4 biosensors,5 and image sensors.6 These studies demonstrated various advantages of an SPV sensor over other chemical sensor: (1) the fabrication process is simple; (2) by multiplexing different light sources in different locations, the device can be a multisensor [light-addressable potentiometric sensors (LAPS)] without additional process complexity; and (3) encapsulation is easier and less critical. SPV also allows for flexibility in the signal processing method as it is based on ac measurements. For example, a differential measurement technique that we proposed made high-sensitive measurements possible by canceling out the common noise and drift component.3 These advantages also suggested that the SPV technique might be used to develop a new generation of chemical sensors, such as a highly integrated chemical and image sensor.", 
    "editor": [
      {
        "familyName": "Yang", 
        "givenName": "Victor C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Ngo", 
        "givenName": "That T.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-4181-3_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-6875-5", 
        "978-1-4615-4181-3"
      ], 
      "name": "Biosensors and Their Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "chemical sensors", 
      "image sensor", 
      "signal processing methods", 
      "surface photovoltage technique", 
      "additional process complexity", 
      "SPV technique", 
      "fabrication process", 
      "high sensitive measurements", 
      "surface photovoltage", 
      "differential measurement technique", 
      "photovoltage technique", 
      "processing methods", 
      "AC measurements", 
      "process complexity", 
      "measurement techniques", 
      "sensors", 
      "different light sources", 
      "biosensor", 
      "immunosensor", 
      "drift component", 
      "possible applications", 
      "light source", 
      "ions", 
      "photovoltage", 
      "encapsulation", 
      "new generation", 
      "chemicals", 
      "different locations", 
      "technique", 
      "measurements", 
      "multisensor", 
      "gas", 
      "common noise", 
      "devices", 
      "advantages", 
      "noise", 
      "applications", 
      "SPV", 
      "flexibility", 
      "generation", 
      "process", 
      "al", 
      "method", 
      "et al", 
      "components", 
      "source", 
      "location", 
      "kind", 
      "example", 
      "complexity", 
      "study"
    ], 
    "name": "Surface Photovoltage-Based Biosensor", 
    "pagination": "175-193", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036194297"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-4181-3_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-4181-3_10", 
      "https://app.dimensions.ai/details/publication/pub.1036194297"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_116.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4615-4181-3_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4181-3_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4181-3_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4181-3_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-4181-3_10'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      78 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-4181-3_10 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 anzsrc-for:0306
4 schema:author Nb5eb05bd9a0746eebb8b979d7b4dbb18
5 schema:datePublished 2000
6 schema:datePublishedReg 2000-01-01
7 schema:description The surface photovoltage (SPV) technique was first applied to a chemical sensor by Hafeman et al. in 1988.1 We applied the technique to immunosensors in 19902 and also investigated possible applications to various kinds of chemical sensors, including ion sensors,3 gas sensors,4 biosensors,5 and image sensors.6 These studies demonstrated various advantages of an SPV sensor over other chemical sensor: (1) the fabrication process is simple; (2) by multiplexing different light sources in different locations, the device can be a multisensor [light-addressable potentiometric sensors (LAPS)] without additional process complexity; and (3) encapsulation is easier and less critical. SPV also allows for flexibility in the signal processing method as it is based on ac measurements. For example, a differential measurement technique that we proposed made high-sensitive measurements possible by canceling out the common noise and drift component.3 These advantages also suggested that the SPV technique might be used to develop a new generation of chemical sensors, such as a highly integrated chemical and image sensor.
8 schema:editor N9c16a52dd72b4a599f1b87aabc0d8cf7
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N0fc2b58c634941fc96d0c5e187f5e57a
13 schema:keywords AC measurements
14 SPV
15 SPV technique
16 additional process complexity
17 advantages
18 al
19 applications
20 biosensor
21 chemical sensors
22 chemicals
23 common noise
24 complexity
25 components
26 devices
27 different light sources
28 different locations
29 differential measurement technique
30 drift component
31 encapsulation
32 et al
33 example
34 fabrication process
35 flexibility
36 gas
37 generation
38 high sensitive measurements
39 image sensor
40 immunosensor
41 ions
42 kind
43 light source
44 location
45 measurement techniques
46 measurements
47 method
48 multisensor
49 new generation
50 noise
51 photovoltage
52 photovoltage technique
53 possible applications
54 process
55 process complexity
56 processing methods
57 sensors
58 signal processing methods
59 source
60 study
61 surface photovoltage
62 surface photovoltage technique
63 technique
64 schema:name Surface Photovoltage-Based Biosensor
65 schema:pagination 175-193
66 schema:productId N3e3ebf5b175b430cad300f4c444cc88d
67 Ne4a182b9940b4c4990b0d2ea34757b19
68 schema:publisher N1d9da4e65b164a1cb353c234bf4f7384
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036194297
70 https://doi.org/10.1007/978-1-4615-4181-3_10
71 schema:sdDatePublished 2022-05-10T10:37
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N97b032d25c91435984762feee1001f16
74 schema:url https://doi.org/10.1007/978-1-4615-4181-3_10
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N000046103344483486ccf92a7c66aab6 schema:familyName Ngo
79 schema:givenName That T.
80 rdf:type schema:Person
81 N0fc2b58c634941fc96d0c5e187f5e57a schema:isbn 978-1-4613-6875-5
82 978-1-4615-4181-3
83 schema:name Biosensors and Their Applications
84 rdf:type schema:Book
85 N1d9da4e65b164a1cb353c234bf4f7384 schema:name Springer Nature
86 rdf:type schema:Organisation
87 N3e3ebf5b175b430cad300f4c444cc88d schema:name dimensions_id
88 schema:value pub.1036194297
89 rdf:type schema:PropertyValue
90 N419bb69a18804117bb209cfaf6d00fb0 rdf:first sg:person.012607413015.07
91 rdf:rest Ndbaa01b1379e449a8b896996e5c5e3a0
92 N7830344fd9594b6383cbbe17b0353737 rdf:first sg:person.01153333673.80
93 rdf:rest N419bb69a18804117bb209cfaf6d00fb0
94 N97b032d25c91435984762feee1001f16 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N9c16a52dd72b4a599f1b87aabc0d8cf7 rdf:first Nb3a80dc192124aa1ad1962561839c2db
97 rdf:rest Ncdb00e27746f4e8d8e2b6421ebd73ef3
98 Nb3a80dc192124aa1ad1962561839c2db schema:familyName Yang
99 schema:givenName Victor C.
100 rdf:type schema:Person
101 Nb5eb05bd9a0746eebb8b979d7b4dbb18 rdf:first sg:person.012353234132.32
102 rdf:rest N7830344fd9594b6383cbbe17b0353737
103 Ncdb00e27746f4e8d8e2b6421ebd73ef3 rdf:first N000046103344483486ccf92a7c66aab6
104 rdf:rest rdf:nil
105 Ndbaa01b1379e449a8b896996e5c5e3a0 rdf:first sg:person.010254024561.05
106 rdf:rest rdf:nil
107 Ne4a182b9940b4c4990b0d2ea34757b19 schema:name doi
108 schema:value 10.1007/978-1-4615-4181-3_10
109 rdf:type schema:PropertyValue
110 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
111 schema:name Chemical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
114 schema:name Analytical Chemistry
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
117 schema:name Physical Chemistry (incl. Structural)
118 rdf:type schema:DefinedTerm
119 sg:person.010254024561.05 schema:affiliation grid-institutes:grid.263023.6
120 schema:familyName Katsube
121 schema:givenName Teruaki
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010254024561.05
123 rdf:type schema:Person
124 sg:person.01153333673.80 schema:affiliation grid-institutes:grid.444515.5
125 schema:familyName Tamiya
126 schema:givenName Eiichi
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153333673.80
128 rdf:type schema:Person
129 sg:person.012353234132.32 schema:affiliation grid-institutes:grid.444515.5
130 schema:familyName Murakami
131 schema:givenName Yuji
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012353234132.32
133 rdf:type schema:Person
134 sg:person.012607413015.07 schema:affiliation grid-institutes:grid.263023.6
135 schema:familyName Uchida
136 schema:givenName Hidekazu
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012607413015.07
138 rdf:type schema:Person
139 grid-institutes:grid.263023.6 schema:alternateName Department of Information and Computer Science, Faculty of Engineering, Saitama University, 338, Urawa, Saitama, Japan
140 schema:name Department of Information and Computer Science, Faculty of Engineering, Saitama University, 338, Urawa, Saitama, Japan
141 rdf:type schema:Organization
142 grid-institutes:grid.444515.5 schema:alternateName School of Materials Science, Japan Advanced Institute of Science and Technology, 923-12, Hokuriku, Tatsunokuchi, Ishikawa, Japan
143 schema:name School of Materials Science, Japan Advanced Institute of Science and Technology, 923-12, Hokuriku, Tatsunokuchi, Ishikawa, Japan
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...