Ontology type: schema:Chapter
1991
AUTHORSKathrin Herrmann , Rachel O. L. Wong , Carla J. Shatz
ABSTRACTSpontaneous neuronal activity is known to play a major role in the construction and final functioning of neuronal circuits, especially those that are formed through interactions of competing inputs. The requirement for neuronal activity in the formation of highly specific connections found in the adult has been well documented in the development of the cat visual system. Shatz and Stryker (1988) and Sretavan et al. (1988) showed that prenatal intracranial infusion of the sodium channel blocker tetrodotoxin, TTX, blocks the segregation of retinogeniculate afferents into eye-specific layers in the lateral geniculate nucleus, LGN, that normally form before birth in the cat. In addition, Stryker and Harris (1986) demonstrated that the formation of the ocular dominance columns in layer 4 of the cat visual cortex can be prevented if retinal ganglion cell discharges are eliminated by intraocular injections of TTX within the critical period postnatally. These studies have clearly shown that action potential activity is required for the elimination of excessive axonal branches and the remodeling of the axonal arbor. Little, however, is known about the role of activity on dendritic development. In this paper we wished to determine whether action potential activity from the retina also influences the morphological development of the dendritic arbors of LGN neurons. More... »
PAGES369-373
The Changing Visual System
ISBN
978-1-4613-6497-9
978-1-4615-3390-0
http://scigraph.springernature.com/pub.10.1007/978-1-4615-3390-0_30
DOIhttp://dx.doi.org/10.1007/978-1-4615-3390-0_30
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1018978272
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Neurosciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1113",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Ophthalmology and Optometry",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Neurobiology, Stanford University School of Medicine, 94305, Stanford, CA, USA",
"id": "http://www.grid.ac/institutes/grid.168010.e",
"name": [
"Department of Neurobiology, Stanford University School of Medicine, 94305, Stanford, CA, USA"
],
"type": "Organization"
},
"familyName": "Herrmann",
"givenName": "Kathrin",
"id": "sg:person.01206330411.21",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206330411.21"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Neurobiology, Stanford University School of Medicine, 94305, Stanford, CA, USA",
"id": "http://www.grid.ac/institutes/grid.168010.e",
"name": [
"Department of Neurobiology, Stanford University School of Medicine, 94305, Stanford, CA, USA"
],
"type": "Organization"
},
"familyName": "Wong",
"givenName": "Rachel O. L.",
"id": "sg:person.012033226162.55",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012033226162.55"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Neurobiology, Stanford University School of Medicine, 94305, Stanford, CA, USA",
"id": "http://www.grid.ac/institutes/grid.168010.e",
"name": [
"Department of Neurobiology, Stanford University School of Medicine, 94305, Stanford, CA, USA"
],
"type": "Organization"
},
"familyName": "Shatz",
"givenName": "Carla J.",
"id": "sg:person.01327745511.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327745511.98"
],
"type": "Person"
}
],
"datePublished": "1991",
"datePublishedReg": "1991-01-01",
"description": "Spontaneous neuronal activity is known to play a major role in the construction and final functioning of neuronal circuits, especially those that are formed through interactions of competing inputs. The requirement for neuronal activity in the formation of highly specific connections found in the adult has been well documented in the development of the cat visual system. Shatz and Stryker (1988) and Sretavan et al. (1988) showed that prenatal intracranial infusion of the sodium channel blocker tetrodotoxin, TTX, blocks the segregation of retinogeniculate afferents into eye-specific layers in the lateral geniculate nucleus, LGN, that normally form before birth in the cat. In addition, Stryker and Harris (1986) demonstrated that the formation of the ocular dominance columns in layer 4 of the cat visual cortex can be prevented if retinal ganglion cell discharges are eliminated by intraocular injections of TTX within the critical period postnatally. These studies have clearly shown that action potential activity is required for the elimination of excessive axonal branches and the remodeling of the axonal arbor. Little, however, is known about the role of activity on dendritic development. In this paper we wished to determine whether action potential activity from the retina also influences the morphological development of the dendritic arbors of LGN neurons.",
"editor": [
{
"familyName": "Bagnoli",
"givenName": "P.",
"type": "Person"
},
{
"familyName": "Hodos",
"givenName": "W.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-4615-3390-0_30",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-1-4613-6497-9",
"978-1-4615-3390-0"
],
"name": "The Changing Visual System",
"type": "Book"
},
"keywords": [
"action potential activity",
"LGN neurons",
"neuronal activity",
"sodium channel blocker tetrodotoxin",
"eye-specific layers",
"ganglion cell discharge",
"channel blocker tetrodotoxin",
"spontaneous neuronal activity",
"cat visual system",
"lateral geniculate nucleus",
"cat visual cortex",
"ocular dominance columns",
"intraocular injection",
"blocker tetrodotoxin",
"activity blockade",
"retinogeniculate afferents",
"dendritic development",
"dendritic arbors",
"geniculate nucleus",
"axonal arbors",
"axonal branches",
"intracranial infusion",
"potential activity",
"visual cortex",
"neuronal circuits",
"role of activity",
"layer 4",
"cell discharge",
"TTX",
"critical period",
"neurons",
"cats",
"arbors",
"specific connections",
"major role",
"afferents",
"visual system",
"activity",
"infusion",
"blockade",
"tetrodotoxin",
"cortex",
"retina",
"Stryker",
"birth",
"adults",
"remodeling",
"injection",
"role",
"LGN",
"morphological development",
"development",
"period",
"discharge",
"functioning",
"elimination",
"study",
"nucleus",
"effect",
"addition",
"formation",
"branches",
"et al",
"interaction",
"morphology",
"system",
"connection",
"requirements",
"Harris",
"circuit",
"input",
"column",
"segregation",
"layer",
"al",
"Shatz",
"paper",
"construction"
],
"name": "Effects of Intraocular Activity Blockade on the Morphology of Developing LGN Neurons in the Cat",
"pagination": "369-373",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1018978272"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-4615-3390-0_30"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-4615-3390-0_30",
"https://app.dimensions.ai/details/publication/pub.1018978272"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:27",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_135.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-1-4615-3390-0_30"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-3390-0_30'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-3390-0_30'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-3390-0_30'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-3390-0_30'
This table displays all metadata directly associated to this object as RDF triples.
161 TRIPLES
23 PREDICATES
105 URIs
97 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-1-4615-3390-0_30 | schema:about | anzsrc-for:11 |
2 | ″ | ″ | anzsrc-for:1109 |
3 | ″ | ″ | anzsrc-for:1113 |
4 | ″ | schema:author | Nd057cfb6fb5e4b6e8a16a2702e4fb3c0 |
5 | ″ | schema:datePublished | 1991 |
6 | ″ | schema:datePublishedReg | 1991-01-01 |
7 | ″ | schema:description | Spontaneous neuronal activity is known to play a major role in the construction and final functioning of neuronal circuits, especially those that are formed through interactions of competing inputs. The requirement for neuronal activity in the formation of highly specific connections found in the adult has been well documented in the development of the cat visual system. Shatz and Stryker (1988) and Sretavan et al. (1988) showed that prenatal intracranial infusion of the sodium channel blocker tetrodotoxin, TTX, blocks the segregation of retinogeniculate afferents into eye-specific layers in the lateral geniculate nucleus, LGN, that normally form before birth in the cat. In addition, Stryker and Harris (1986) demonstrated that the formation of the ocular dominance columns in layer 4 of the cat visual cortex can be prevented if retinal ganglion cell discharges are eliminated by intraocular injections of TTX within the critical period postnatally. These studies have clearly shown that action potential activity is required for the elimination of excessive axonal branches and the remodeling of the axonal arbor. Little, however, is known about the role of activity on dendritic development. In this paper we wished to determine whether action potential activity from the retina also influences the morphological development of the dendritic arbors of LGN neurons. |
8 | ″ | schema:editor | N335d3e61b8c54726b551be7d61ee600c |
9 | ″ | schema:genre | chapter |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | Ndc2d0c4ec03844fab9bfb0230594792f |
13 | ″ | schema:keywords | Harris |
14 | ″ | ″ | LGN |
15 | ″ | ″ | LGN neurons |
16 | ″ | ″ | Shatz |
17 | ″ | ″ | Stryker |
18 | ″ | ″ | TTX |
19 | ″ | ″ | action potential activity |
20 | ″ | ″ | activity |
21 | ″ | ″ | activity blockade |
22 | ″ | ″ | addition |
23 | ″ | ″ | adults |
24 | ″ | ″ | afferents |
25 | ″ | ″ | al |
26 | ″ | ″ | arbors |
27 | ″ | ″ | axonal arbors |
28 | ″ | ″ | axonal branches |
29 | ″ | ″ | birth |
30 | ″ | ″ | blockade |
31 | ″ | ″ | blocker tetrodotoxin |
32 | ″ | ″ | branches |
33 | ″ | ″ | cat visual cortex |
34 | ″ | ″ | cat visual system |
35 | ″ | ″ | cats |
36 | ″ | ″ | cell discharge |
37 | ″ | ″ | channel blocker tetrodotoxin |
38 | ″ | ″ | circuit |
39 | ″ | ″ | column |
40 | ″ | ″ | connection |
41 | ″ | ″ | construction |
42 | ″ | ″ | cortex |
43 | ″ | ″ | critical period |
44 | ″ | ″ | dendritic arbors |
45 | ″ | ″ | dendritic development |
46 | ″ | ″ | development |
47 | ″ | ″ | discharge |
48 | ″ | ″ | effect |
49 | ″ | ″ | elimination |
50 | ″ | ″ | et al |
51 | ″ | ″ | eye-specific layers |
52 | ″ | ″ | formation |
53 | ″ | ″ | functioning |
54 | ″ | ″ | ganglion cell discharge |
55 | ″ | ″ | geniculate nucleus |
56 | ″ | ″ | infusion |
57 | ″ | ″ | injection |
58 | ″ | ″ | input |
59 | ″ | ″ | interaction |
60 | ″ | ″ | intracranial infusion |
61 | ″ | ″ | intraocular injection |
62 | ″ | ″ | lateral geniculate nucleus |
63 | ″ | ″ | layer |
64 | ″ | ″ | layer 4 |
65 | ″ | ″ | major role |
66 | ″ | ″ | morphological development |
67 | ″ | ″ | morphology |
68 | ″ | ″ | neuronal activity |
69 | ″ | ″ | neuronal circuits |
70 | ″ | ″ | neurons |
71 | ″ | ″ | nucleus |
72 | ″ | ″ | ocular dominance columns |
73 | ″ | ″ | paper |
74 | ″ | ″ | period |
75 | ″ | ″ | potential activity |
76 | ″ | ″ | remodeling |
77 | ″ | ″ | requirements |
78 | ″ | ″ | retina |
79 | ″ | ″ | retinogeniculate afferents |
80 | ″ | ″ | role |
81 | ″ | ″ | role of activity |
82 | ″ | ″ | segregation |
83 | ″ | ″ | sodium channel blocker tetrodotoxin |
84 | ″ | ″ | specific connections |
85 | ″ | ″ | spontaneous neuronal activity |
86 | ″ | ″ | study |
87 | ″ | ″ | system |
88 | ″ | ″ | tetrodotoxin |
89 | ″ | ″ | visual cortex |
90 | ″ | ″ | visual system |
91 | ″ | schema:name | Effects of Intraocular Activity Blockade on the Morphology of Developing LGN Neurons in the Cat |
92 | ″ | schema:pagination | 369-373 |
93 | ″ | schema:productId | N2c9cdcda82544272859ca45127a705c7 |
94 | ″ | ″ | Nd8016a4235fd4791bf65d18f33085946 |
95 | ″ | schema:publisher | Nc33e559378124a3ab48cd15e9057ec3a |
96 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018978272 |
97 | ″ | ″ | https://doi.org/10.1007/978-1-4615-3390-0_30 |
98 | ″ | schema:sdDatePublished | 2022-06-01T22:27 |
99 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
100 | ″ | schema:sdPublisher | N373d6a43225b4f578bd500127f4344d8 |
101 | ″ | schema:url | https://doi.org/10.1007/978-1-4615-3390-0_30 |
102 | ″ | sgo:license | sg:explorer/license/ |
103 | ″ | sgo:sdDataset | chapters |
104 | ″ | rdf:type | schema:Chapter |
105 | N22d8d9706a7545be82c614310fe6d466 | schema:familyName | Hodos |
106 | ″ | schema:givenName | W. |
107 | ″ | rdf:type | schema:Person |
108 | N2c9cdcda82544272859ca45127a705c7 | schema:name | doi |
109 | ″ | schema:value | 10.1007/978-1-4615-3390-0_30 |
110 | ″ | rdf:type | schema:PropertyValue |
111 | N335d3e61b8c54726b551be7d61ee600c | rdf:first | Nb251362c30fd4186826a9bdf3665dab3 |
112 | ″ | rdf:rest | N779f94afa5fc47bca2ac4ca132966ced |
113 | N36cc5ad7cbee43fe92bef42f3d80a65b | rdf:first | sg:person.01327745511.98 |
114 | ″ | rdf:rest | rdf:nil |
115 | N373d6a43225b4f578bd500127f4344d8 | schema:name | Springer Nature - SN SciGraph project |
116 | ″ | rdf:type | schema:Organization |
117 | N448fb6dddc474d2992bd4a7684ef96a9 | rdf:first | sg:person.012033226162.55 |
118 | ″ | rdf:rest | N36cc5ad7cbee43fe92bef42f3d80a65b |
119 | N779f94afa5fc47bca2ac4ca132966ced | rdf:first | N22d8d9706a7545be82c614310fe6d466 |
120 | ″ | rdf:rest | rdf:nil |
121 | Nb251362c30fd4186826a9bdf3665dab3 | schema:familyName | Bagnoli |
122 | ″ | schema:givenName | P. |
123 | ″ | rdf:type | schema:Person |
124 | Nc33e559378124a3ab48cd15e9057ec3a | schema:name | Springer Nature |
125 | ″ | rdf:type | schema:Organisation |
126 | Nd057cfb6fb5e4b6e8a16a2702e4fb3c0 | rdf:first | sg:person.01206330411.21 |
127 | ″ | rdf:rest | N448fb6dddc474d2992bd4a7684ef96a9 |
128 | Nd8016a4235fd4791bf65d18f33085946 | schema:name | dimensions_id |
129 | ″ | schema:value | pub.1018978272 |
130 | ″ | rdf:type | schema:PropertyValue |
131 | Ndc2d0c4ec03844fab9bfb0230594792f | schema:isbn | 978-1-4613-6497-9 |
132 | ″ | ″ | 978-1-4615-3390-0 |
133 | ″ | schema:name | The Changing Visual System |
134 | ″ | rdf:type | schema:Book |
135 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
136 | ″ | schema:name | Medical and Health Sciences |
137 | ″ | rdf:type | schema:DefinedTerm |
138 | anzsrc-for:1109 | schema:inDefinedTermSet | anzsrc-for: |
139 | ″ | schema:name | Neurosciences |
140 | ″ | rdf:type | schema:DefinedTerm |
141 | anzsrc-for:1113 | schema:inDefinedTermSet | anzsrc-for: |
142 | ″ | schema:name | Ophthalmology and Optometry |
143 | ″ | rdf:type | schema:DefinedTerm |
144 | sg:person.012033226162.55 | schema:affiliation | grid-institutes:grid.168010.e |
145 | ″ | schema:familyName | Wong |
146 | ″ | schema:givenName | Rachel O. L. |
147 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012033226162.55 |
148 | ″ | rdf:type | schema:Person |
149 | sg:person.01206330411.21 | schema:affiliation | grid-institutes:grid.168010.e |
150 | ″ | schema:familyName | Herrmann |
151 | ″ | schema:givenName | Kathrin |
152 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206330411.21 |
153 | ″ | rdf:type | schema:Person |
154 | sg:person.01327745511.98 | schema:affiliation | grid-institutes:grid.168010.e |
155 | ″ | schema:familyName | Shatz |
156 | ″ | schema:givenName | Carla J. |
157 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327745511.98 |
158 | ″ | rdf:type | schema:Person |
159 | grid-institutes:grid.168010.e | schema:alternateName | Department of Neurobiology, Stanford University School of Medicine, 94305, Stanford, CA, USA |
160 | ″ | schema:name | Department of Neurobiology, Stanford University School of Medicine, 94305, Stanford, CA, USA |
161 | ″ | rdf:type | schema:Organization |