Predictability View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

G. Paladin , M. H. Jensen , A. Vulpiani

ABSTRACT

The concept of predictability plays a major role in the theory of chaotic dynamical systems and turbulence. In dynamical systems, the predictability is related to the sensitive dependence on initial conditions, i.e. to the fact that the distance of two nearby orbits diverges as exp(λt) where A is the maximum Lyapunov exponent[1]. Consequently if the maximum admitted error of the state of the system is δmax and the initial error is δ0, then the future of the system can be predicted up to a time This simple remark is rather important since it implies that in dynamical systems the forecasting is limited by the chaotic nature of the evolution and not by the resolution of the measurements. The gain obtained by achieving finer resolutions is only logarithmic and can be safely ignored for practical purposes. More... »

PAGES

75-79

Book

TITLE

Turbulence

ISBN

978-1-4613-6106-0
978-1-4615-2586-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-2586-8_12

DOI

http://dx.doi.org/10.1007/978-1-4615-2586-8_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008089980


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of L'Aquila", 
          "id": "https://www.grid.ac/institutes/grid.158820.6", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 dell\u2019Aquila, Via Vetoio, I-67010, Coppito L\u2019Aquila, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paladin", 
        "givenName": "G.", 
        "id": "sg:person.07526211325.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07526211325.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen \u00d8, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jensen", 
        "givenName": "M. H.", 
        "id": "sg:person.01152213267.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152213267.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 \u201cLa Sapienza\u201d, P.le Aldo Moro 2, I-00185, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vulpiani", 
        "givenName": "A.", 
        "id": "sg:person.01352261626.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0375-9601(79)90653-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010426788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(79)90653-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010426788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(87)90110-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031137665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(87)90110-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031137665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1972)029<1041:potf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044815318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112084000513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053847990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.14.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.14.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.56.4210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063110072"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "The concept of predictability plays a major role in the theory of chaotic dynamical systems and turbulence. In dynamical systems, the predictability is related to the sensitive dependence on initial conditions, i.e. to the fact that the distance of two nearby orbits diverges as exp(\u03bbt) where A is the maximum Lyapunov exponent[1]. Consequently if the maximum admitted error of the state of the system is \u03b4max and the initial error is \u03b40, then the future of the system can be predicted up to a time This simple remark is rather important since it implies that in dynamical systems the forecasting is limited by the chaotic nature of the evolution and not by the resolution of the measurements. The gain obtained by achieving finer resolutions is only logarithmic and can be safely ignored for practical purposes.", 
    "editor": [
      {
        "familyName": "Tabeling", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "familyName": "Cardoso", 
        "givenName": "O.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-2586-8_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-6106-0", 
        "978-1-4615-2586-8"
      ], 
      "name": "Turbulence", 
      "type": "Book"
    }, 
    "name": "Predictability", 
    "pagination": "75-79", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008089980"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-2586-8_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "268a7e2d9956c5e6f0a56a1d570c5c81b0a8fd712584dcc60c994b8986dbf96d"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-2586-8_12", 
      "https://app.dimensions.ai/details/publication/pub.1008089980"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13090_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4615-2586-8_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2586-8_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2586-8_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2586-8_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2586-8_12'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-2586-8_12 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3042cfb97bdc46d29b7c9c29b96c7d56
4 schema:citation https://doi.org/10.1016/0370-1573(87)90110-4
5 https://doi.org/10.1016/0375-9601(79)90653-4
6 https://doi.org/10.1017/s0022112084000513
7 https://doi.org/10.1103/physreva.14.2338
8 https://doi.org/10.1103/physreva.43.798
9 https://doi.org/10.1103/physrevlett.70.166
10 https://doi.org/10.1143/jpsj.56.4210
11 https://doi.org/10.1175/1520-0469(1972)029<1041:potf>2.0.co;2
12 schema:datePublished 1995
13 schema:datePublishedReg 1995-01-01
14 schema:description The concept of predictability plays a major role in the theory of chaotic dynamical systems and turbulence. In dynamical systems, the predictability is related to the sensitive dependence on initial conditions, i.e. to the fact that the distance of two nearby orbits diverges as exp(λt) where A is the maximum Lyapunov exponent[1]. Consequently if the maximum admitted error of the state of the system is δmax and the initial error is δ0, then the future of the system can be predicted up to a time This simple remark is rather important since it implies that in dynamical systems the forecasting is limited by the chaotic nature of the evolution and not by the resolution of the measurements. The gain obtained by achieving finer resolutions is only logarithmic and can be safely ignored for practical purposes.
15 schema:editor Nf8c61704633e4171bc4522632449f7fd
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N48847652bc4f400b982e7bf2417de851
20 schema:name Predictability
21 schema:pagination 75-79
22 schema:productId N9378b1e897de44a3b5cf11c74ff7f47e
23 Nd12af3aed3094eae83148a97cce0559c
24 Nfe25876d75124cc4bf6f98c4d8b0ab2a
25 schema:publisher Nb1fb7d2aa4a54e6791328e0ebb1dea9f
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008089980
27 https://doi.org/10.1007/978-1-4615-2586-8_12
28 schema:sdDatePublished 2019-04-16T09:35
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N7c43f6e4c9864f6fa9f374ab10fdcc1c
31 schema:url https://link.springer.com/10.1007%2F978-1-4615-2586-8_12
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N3042cfb97bdc46d29b7c9c29b96c7d56 rdf:first sg:person.07526211325.01
36 rdf:rest N758bbddae98b4784941f37963f08d594
37 N48847652bc4f400b982e7bf2417de851 schema:isbn 978-1-4613-6106-0
38 978-1-4615-2586-8
39 schema:name Turbulence
40 rdf:type schema:Book
41 N59d535cbeab44d6cbab3b82b16cec526 rdf:first Nc468d6a7e5f34feda77a79c557a7cc55
42 rdf:rest rdf:nil
43 N5bf4258fa1e9483d894ca70eb9116b75 schema:familyName Tabeling
44 schema:givenName P.
45 rdf:type schema:Person
46 N758bbddae98b4784941f37963f08d594 rdf:first sg:person.01152213267.83
47 rdf:rest N7dee7bcab307469982ff4cc7863898e7
48 N7c43f6e4c9864f6fa9f374ab10fdcc1c schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N7dee7bcab307469982ff4cc7863898e7 rdf:first sg:person.01352261626.07
51 rdf:rest rdf:nil
52 N9378b1e897de44a3b5cf11c74ff7f47e schema:name dimensions_id
53 schema:value pub.1008089980
54 rdf:type schema:PropertyValue
55 Nb1fb7d2aa4a54e6791328e0ebb1dea9f schema:location Boston, MA
56 schema:name Springer US
57 rdf:type schema:Organisation
58 Nc468d6a7e5f34feda77a79c557a7cc55 schema:familyName Cardoso
59 schema:givenName O.
60 rdf:type schema:Person
61 Nd12af3aed3094eae83148a97cce0559c schema:name readcube_id
62 schema:value 268a7e2d9956c5e6f0a56a1d570c5c81b0a8fd712584dcc60c994b8986dbf96d
63 rdf:type schema:PropertyValue
64 Nf8c61704633e4171bc4522632449f7fd rdf:first N5bf4258fa1e9483d894ca70eb9116b75
65 rdf:rest N59d535cbeab44d6cbab3b82b16cec526
66 Nfe25876d75124cc4bf6f98c4d8b0ab2a schema:name doi
67 schema:value 10.1007/978-1-4615-2586-8_12
68 rdf:type schema:PropertyValue
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:person.01152213267.83 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
76 schema:familyName Jensen
77 schema:givenName M. H.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152213267.83
79 rdf:type schema:Person
80 sg:person.01352261626.07 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
81 schema:familyName Vulpiani
82 schema:givenName A.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07
84 rdf:type schema:Person
85 sg:person.07526211325.01 schema:affiliation https://www.grid.ac/institutes/grid.158820.6
86 schema:familyName Paladin
87 schema:givenName G.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07526211325.01
89 rdf:type schema:Person
90 https://doi.org/10.1016/0370-1573(87)90110-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031137665
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0375-9601(79)90653-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010426788
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1017/s0022112084000513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053847990
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physreva.14.2338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466055
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physreva.43.798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060483603
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.70.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806493
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1143/jpsj.56.4210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063110072
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1175/1520-0469(1972)029<1041:potf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044815318
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.158820.6 schema:alternateName University of L'Aquila
107 schema:name Dipartimento di Fisica, Università dell’Aquila, Via Vetoio, I-67010, Coppito L’Aquila, Italy
108 rdf:type schema:Organization
109 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
110 schema:name The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen Ø, Denmark
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
113 schema:name Dipartimento di Fisica, Università “La Sapienza”, P.le Aldo Moro 2, I-00185, Roma, Italy
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...