Predictability View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

G. Paladin , M. H. Jensen , A. Vulpiani

ABSTRACT

The concept of predictability plays a major role in the theory of chaotic dynamical systems and turbulence. In dynamical systems, the predictability is related to the sensitive dependence on initial conditions, i.e. to the fact that the distance of two nearby orbits diverges as exp(λt) where A is the maximum Lyapunov exponent[1]. Consequently if the maximum admitted error of the state of the system is δmax and the initial error is δ0, then the future of the system can be predicted up to a time This simple remark is rather important since it implies that in dynamical systems the forecasting is limited by the chaotic nature of the evolution and not by the resolution of the measurements. The gain obtained by achieving finer resolutions is only logarithmic and can be safely ignored for practical purposes. More... »

PAGES

75-79

Book

TITLE

Turbulence

ISBN

978-1-4613-6106-0
978-1-4615-2586-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-2586-8_12

DOI

http://dx.doi.org/10.1007/978-1-4615-2586-8_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008089980


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of L'Aquila", 
          "id": "https://www.grid.ac/institutes/grid.158820.6", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 dell\u2019Aquila, Via Vetoio, I-67010, Coppito L\u2019Aquila, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paladin", 
        "givenName": "G.", 
        "id": "sg:person.07526211325.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07526211325.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Copenhagen", 
          "id": "https://www.grid.ac/institutes/grid.5254.6", 
          "name": [
            "The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen \u00d8, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jensen", 
        "givenName": "M. H.", 
        "id": "sg:person.01152213267.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152213267.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sapienza University of Rome", 
          "id": "https://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Fisica, Universit\u00e0 \u201cLa Sapienza\u201d, P.le Aldo Moro 2, I-00185, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vulpiani", 
        "givenName": "A.", 
        "id": "sg:person.01352261626.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0375-9601(79)90653-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010426788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(79)90653-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010426788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(87)90110-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031137665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(87)90110-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031137665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1972)029<1041:potf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044815318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112084000513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053847990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.14.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.14.2338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060806493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.56.4210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063110072"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "The concept of predictability plays a major role in the theory of chaotic dynamical systems and turbulence. In dynamical systems, the predictability is related to the sensitive dependence on initial conditions, i.e. to the fact that the distance of two nearby orbits diverges as exp(\u03bbt) where A is the maximum Lyapunov exponent[1]. Consequently if the maximum admitted error of the state of the system is \u03b4max and the initial error is \u03b40, then the future of the system can be predicted up to a time This simple remark is rather important since it implies that in dynamical systems the forecasting is limited by the chaotic nature of the evolution and not by the resolution of the measurements. The gain obtained by achieving finer resolutions is only logarithmic and can be safely ignored for practical purposes.", 
    "editor": [
      {
        "familyName": "Tabeling", 
        "givenName": "P.", 
        "type": "Person"
      }, 
      {
        "familyName": "Cardoso", 
        "givenName": "O.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-2586-8_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-6106-0", 
        "978-1-4615-2586-8"
      ], 
      "name": "Turbulence", 
      "type": "Book"
    }, 
    "name": "Predictability", 
    "pagination": "75-79", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008089980"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-2586-8_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "268a7e2d9956c5e6f0a56a1d570c5c81b0a8fd712584dcc60c994b8986dbf96d"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-2586-8_12", 
      "https://app.dimensions.ai/details/publication/pub.1008089980"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13090_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4615-2586-8_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2586-8_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2586-8_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2586-8_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2586-8_12'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      35 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-2586-8_12 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N082e2dd4af524f2e845a6bb7edc35242
4 schema:citation https://doi.org/10.1016/0370-1573(87)90110-4
5 https://doi.org/10.1016/0375-9601(79)90653-4
6 https://doi.org/10.1017/s0022112084000513
7 https://doi.org/10.1103/physreva.14.2338
8 https://doi.org/10.1103/physreva.43.798
9 https://doi.org/10.1103/physrevlett.70.166
10 https://doi.org/10.1143/jpsj.56.4210
11 https://doi.org/10.1175/1520-0469(1972)029<1041:potf>2.0.co;2
12 schema:datePublished 1995
13 schema:datePublishedReg 1995-01-01
14 schema:description The concept of predictability plays a major role in the theory of chaotic dynamical systems and turbulence. In dynamical systems, the predictability is related to the sensitive dependence on initial conditions, i.e. to the fact that the distance of two nearby orbits diverges as exp(λt) where A is the maximum Lyapunov exponent[1]. Consequently if the maximum admitted error of the state of the system is δmax and the initial error is δ0, then the future of the system can be predicted up to a time This simple remark is rather important since it implies that in dynamical systems the forecasting is limited by the chaotic nature of the evolution and not by the resolution of the measurements. The gain obtained by achieving finer resolutions is only logarithmic and can be safely ignored for practical purposes.
15 schema:editor Nfc751efaf56f45e5bf89237e8cb12066
16 schema:genre chapter
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Naaa56f05ddcc47f28e1fa9d97a9744f8
20 schema:name Predictability
21 schema:pagination 75-79
22 schema:productId N5e73c0f8c9664ccdafa33465a19ee15f
23 Nb81e5c9d2ad2419cade895a2eb7087b9
24 Ndc47daf026364a878efe6130517db637
25 schema:publisher Ne2ad267f949c441b84c198fd00aae090
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008089980
27 https://doi.org/10.1007/978-1-4615-2586-8_12
28 schema:sdDatePublished 2019-04-16T09:35
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N21a96dc3ccf5409683823e7032e169a5
31 schema:url https://link.springer.com/10.1007%2F978-1-4615-2586-8_12
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N082e2dd4af524f2e845a6bb7edc35242 rdf:first sg:person.07526211325.01
36 rdf:rest N69dfb5b00bfa467bacb6cbaaf911ffad
37 N10af89f1596d4fda9d5118dcc0c21a06 rdf:first N9c3368030d4342bb8d9d5ee21b842622
38 rdf:rest rdf:nil
39 N21a96dc3ccf5409683823e7032e169a5 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N5e73c0f8c9664ccdafa33465a19ee15f schema:name dimensions_id
42 schema:value pub.1008089980
43 rdf:type schema:PropertyValue
44 N69dfb5b00bfa467bacb6cbaaf911ffad rdf:first sg:person.01152213267.83
45 rdf:rest N99af8f9056964430bae86d95a5ae848d
46 N7ee80d37f49143b8b09bb70b8adb893f schema:familyName Tabeling
47 schema:givenName P.
48 rdf:type schema:Person
49 N99af8f9056964430bae86d95a5ae848d rdf:first sg:person.01352261626.07
50 rdf:rest rdf:nil
51 N9c3368030d4342bb8d9d5ee21b842622 schema:familyName Cardoso
52 schema:givenName O.
53 rdf:type schema:Person
54 Naaa56f05ddcc47f28e1fa9d97a9744f8 schema:isbn 978-1-4613-6106-0
55 978-1-4615-2586-8
56 schema:name Turbulence
57 rdf:type schema:Book
58 Nb81e5c9d2ad2419cade895a2eb7087b9 schema:name readcube_id
59 schema:value 268a7e2d9956c5e6f0a56a1d570c5c81b0a8fd712584dcc60c994b8986dbf96d
60 rdf:type schema:PropertyValue
61 Ndc47daf026364a878efe6130517db637 schema:name doi
62 schema:value 10.1007/978-1-4615-2586-8_12
63 rdf:type schema:PropertyValue
64 Ne2ad267f949c441b84c198fd00aae090 schema:location Boston, MA
65 schema:name Springer US
66 rdf:type schema:Organisation
67 Nfc751efaf56f45e5bf89237e8cb12066 rdf:first N7ee80d37f49143b8b09bb70b8adb893f
68 rdf:rest N10af89f1596d4fda9d5118dcc0c21a06
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:person.01152213267.83 schema:affiliation https://www.grid.ac/institutes/grid.5254.6
76 schema:familyName Jensen
77 schema:givenName M. H.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152213267.83
79 rdf:type schema:Person
80 sg:person.01352261626.07 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
81 schema:familyName Vulpiani
82 schema:givenName A.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07
84 rdf:type schema:Person
85 sg:person.07526211325.01 schema:affiliation https://www.grid.ac/institutes/grid.158820.6
86 schema:familyName Paladin
87 schema:givenName G.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07526211325.01
89 rdf:type schema:Person
90 https://doi.org/10.1016/0370-1573(87)90110-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031137665
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0375-9601(79)90653-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010426788
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1017/s0022112084000513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053847990
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physreva.14.2338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466055
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physreva.43.798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060483603
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.70.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806493
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1143/jpsj.56.4210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063110072
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1175/1520-0469(1972)029<1041:potf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044815318
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.158820.6 schema:alternateName University of L'Aquila
107 schema:name Dipartimento di Fisica, Università dell’Aquila, Via Vetoio, I-67010, Coppito L’Aquila, Italy
108 rdf:type schema:Organization
109 https://www.grid.ac/institutes/grid.5254.6 schema:alternateName University of Copenhagen
110 schema:name The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen Ø, Denmark
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
113 schema:name Dipartimento di Fisica, Università “La Sapienza”, P.le Aldo Moro 2, I-00185, Roma, Italy
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...