On the Hierarchy of the Generalized KdV Equations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1994

AUTHORS

Carlos E. Kenig , Gustavo Ponce , Luis Vega

ABSTRACT

We consider a sequence of one-dimensional dispersive equations. These equations contain the KdV hierarchy as well as several higher order models arising in both physics and mathematics. We obtain conditions which guarantee that the corresponding initial value problem is locally and globally well-posed in appropiated function spaces. Our method is quite general and can be used to study other dispersive systems and related problems. More... »

PAGES

347-356

Book

TITLE

Singular Limits of Dispersive Waves

ISBN

978-1-4613-6054-4
978-1-4615-2474-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-2474-8_24

DOI

http://dx.doi.org/10.1007/978-1-4615-2474-8_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024162875


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chicago", 
          "id": "https://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "Department of Mathematics, University of Chicago, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kenig", 
        "givenName": "Carlos E.", 
        "id": "sg:person.016330172727.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016330172727.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Mathematics, University of California, 93106, Santa Barbara, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ponce", 
        "givenName": "Gustavo", 
        "id": "sg:person.011310113454.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011310113454.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5515.4", 
          "name": [
            "Facultad de Ciencias, Universidad Autonoma de Madrid Cantoblanco, 28049, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vega", 
        "givenName": "Luis", 
        "id": "sg:person.010353550236.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353550236.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cpa.3160210503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009790301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160210503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009790301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(79)90068-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015012870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1983-0712258-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016312607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(84)90035-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030304060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.19.1095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060770056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.19.1095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060770056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-77-04430-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064418881"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994", 
    "datePublishedReg": "1994-01-01", 
    "description": "We consider a sequence of one-dimensional dispersive equations. These equations contain the KdV hierarchy as well as several higher order models arising in both physics and mathematics. We obtain conditions which guarantee that the corresponding initial value problem is locally and globally well-posed in appropiated function spaces. Our method is quite general and can be used to study other dispersive systems and related problems.", 
    "editor": [
      {
        "familyName": "Ercolani", 
        "givenName": "N. M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gabitov", 
        "givenName": "I. R.", 
        "type": "Person"
      }, 
      {
        "familyName": "Levermore", 
        "givenName": "C. D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Serre", 
        "givenName": "D.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-2474-8_24", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-6054-4", 
        "978-1-4615-2474-8"
      ], 
      "name": "Singular Limits of Dispersive Waves", 
      "type": "Book"
    }, 
    "name": "On the Hierarchy of the Generalized KdV Equations", 
    "pagination": "347-356", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024162875"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-2474-8_24"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "731d573052ba7fbd06db1746ad68ac44c791feb88983beaecc441ef410633f05"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-2474-8_24", 
      "https://app.dimensions.ai/details/publication/pub.1024162875"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130823_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4615-2474-8_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2474-8_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2474-8_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2474-8_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2474-8_24'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-2474-8_24 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N28a8010e24ab4d24b748b5d690c19264
4 schema:citation https://doi.org/10.1002/cpa.3160210503
5 https://doi.org/10.1016/0001-8708(84)90035-5
6 https://doi.org/10.1016/0022-0396(79)90068-8
7 https://doi.org/10.1090/s0002-9947-1983-0712258-4
8 https://doi.org/10.1103/physrevlett.19.1095
9 https://doi.org/10.1215/s0012-7094-77-04430-1
10 schema:datePublished 1994
11 schema:datePublishedReg 1994-01-01
12 schema:description We consider a sequence of one-dimensional dispersive equations. These equations contain the KdV hierarchy as well as several higher order models arising in both physics and mathematics. We obtain conditions which guarantee that the corresponding initial value problem is locally and globally well-posed in appropiated function spaces. Our method is quite general and can be used to study other dispersive systems and related problems.
13 schema:editor Nee546224db234d8784878cf411c78060
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nca21528d644c4fa5b196fc7e3b1bce5d
18 schema:name On the Hierarchy of the Generalized KdV Equations
19 schema:pagination 347-356
20 schema:productId N2daaa3bd67a245e9a2a5647a18748d30
21 N553e9526ad904eb59eb5c6b1dc79a22c
22 Ne9946c4c68a2414787f1d7d5dbe12b3f
23 schema:publisher N2653e8914e6a4a1cbbe3d3959c8f27ec
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024162875
25 https://doi.org/10.1007/978-1-4615-2474-8_24
26 schema:sdDatePublished 2019-04-16T09:19
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N5eae3ee50362437a9e50eeb55593f624
29 schema:url https://link.springer.com/10.1007%2F978-1-4615-2474-8_24
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N13e2490128c84d00aff3111f7559b506 schema:familyName Serre
34 schema:givenName D.
35 rdf:type schema:Person
36 N19fbf05bd19748bcb89a5a63c4941d63 rdf:first N13e2490128c84d00aff3111f7559b506
37 rdf:rest rdf:nil
38 N1d687e910d144f8681934d4d381135b0 rdf:first N1f202ac739cd4b39b9f2e963d0b3b144
39 rdf:rest N19fbf05bd19748bcb89a5a63c4941d63
40 N1e4992e2afdb40ce98119108e0204e7f rdf:first N9b75c5c9a5a8463b938c04256626c199
41 rdf:rest N1d687e910d144f8681934d4d381135b0
42 N1f202ac739cd4b39b9f2e963d0b3b144 schema:familyName Levermore
43 schema:givenName C. D.
44 rdf:type schema:Person
45 N2653e8914e6a4a1cbbe3d3959c8f27ec schema:location Boston, MA
46 schema:name Springer US
47 rdf:type schema:Organisation
48 N28a8010e24ab4d24b748b5d690c19264 rdf:first sg:person.016330172727.14
49 rdf:rest N7d69d1fdc3254fd6ba3992cd1c49f087
50 N2daaa3bd67a245e9a2a5647a18748d30 schema:name dimensions_id
51 schema:value pub.1024162875
52 rdf:type schema:PropertyValue
53 N423aa7335a1b42c2933491e5e6fd5d5c schema:familyName Ercolani
54 schema:givenName N. M.
55 rdf:type schema:Person
56 N553e9526ad904eb59eb5c6b1dc79a22c schema:name doi
57 schema:value 10.1007/978-1-4615-2474-8_24
58 rdf:type schema:PropertyValue
59 N5eae3ee50362437a9e50eeb55593f624 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N7d69d1fdc3254fd6ba3992cd1c49f087 rdf:first sg:person.011310113454.49
62 rdf:rest Nc23bed71154740dc872cb06ecd49a889
63 N9b75c5c9a5a8463b938c04256626c199 schema:familyName Gabitov
64 schema:givenName I. R.
65 rdf:type schema:Person
66 Nc23bed71154740dc872cb06ecd49a889 rdf:first sg:person.010353550236.52
67 rdf:rest rdf:nil
68 Nca21528d644c4fa5b196fc7e3b1bce5d schema:isbn 978-1-4613-6054-4
69 978-1-4615-2474-8
70 schema:name Singular Limits of Dispersive Waves
71 rdf:type schema:Book
72 Ne9946c4c68a2414787f1d7d5dbe12b3f schema:name readcube_id
73 schema:value 731d573052ba7fbd06db1746ad68ac44c791feb88983beaecc441ef410633f05
74 rdf:type schema:PropertyValue
75 Nee546224db234d8784878cf411c78060 rdf:first N423aa7335a1b42c2933491e5e6fd5d5c
76 rdf:rest N1e4992e2afdb40ce98119108e0204e7f
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
81 schema:name Pure Mathematics
82 rdf:type schema:DefinedTerm
83 sg:person.010353550236.52 schema:affiliation https://www.grid.ac/institutes/grid.5515.4
84 schema:familyName Vega
85 schema:givenName Luis
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353550236.52
87 rdf:type schema:Person
88 sg:person.011310113454.49 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
89 schema:familyName Ponce
90 schema:givenName Gustavo
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011310113454.49
92 rdf:type schema:Person
93 sg:person.016330172727.14 schema:affiliation https://www.grid.ac/institutes/grid.170205.1
94 schema:familyName Kenig
95 schema:givenName Carlos E.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016330172727.14
97 rdf:type schema:Person
98 https://doi.org/10.1002/cpa.3160210503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009790301
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0001-8708(84)90035-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030304060
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0022-0396(79)90068-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015012870
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1090/s0002-9947-1983-0712258-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016312607
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevlett.19.1095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060770056
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1215/s0012-7094-77-04430-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064418881
109 rdf:type schema:CreativeWork
110 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
111 schema:name Department of Mathematics, University of California, 93106, Santa Barbara, CA, USA
112 rdf:type schema:Organization
113 https://www.grid.ac/institutes/grid.170205.1 schema:alternateName University of Chicago
114 schema:name Department of Mathematics, University of Chicago, 60637, Chicago, IL, USA
115 rdf:type schema:Organization
116 https://www.grid.ac/institutes/grid.5515.4 schema:alternateName Autonomous University of Madrid
117 schema:name Facultad de Ciencias, Universidad Autonoma de Madrid Cantoblanco, 28049, Madrid, Spain
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...