Reduced S - Matrix Approach to Scattering Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1994

AUTHORS

C. Hategan

ABSTRACT

The approach of multichannel problems in terms of reduced or effective operators is frequently used both in Atomic and Nuclear Scattering Physics. Perhaps the most familiar example is the method of Coupled Channels. The system of coupled equations is truncated on computational reasons; the number of equations can be too large to be numerically processed. To compensate the eliminated reaction channels, the potential matrix is modified; the interaction potential has now additional terms which make it, an effective one. The formal basis for effective interaction potential is the Projector Method developed in Scattering Physics by Feshbach. The two projection operators are used to divide the set of scattering channels into two subsets:{r} — the subset of retained channels, and {e} — the subset of eliminated channels. One obtains for the retained channels an effective hamiltonian; the original “bare” interaction is replaced by an effective one. More... »

PAGES

313-326

Book

TITLE

Topics in Atomic and Nuclear Collisions

ISBN

978-1-4613-6032-2
978-1-4615-2431-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-2431-1_19

DOI

http://dx.doi.org/10.1007/978-1-4615-2431-1_19

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005947106


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Atomic Physics, Bucharest, Romania", 
          "id": "http://www.grid.ac/institutes/grid.425264.3", 
          "name": [
            "Institute of Atomic Physics, Bucharest, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hategan", 
        "givenName": "C.", 
        "id": "sg:person.010707064705.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707064705.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1994", 
    "datePublishedReg": "1994-01-01", 
    "description": "The approach of multichannel problems in terms of reduced or effective operators is frequently used both in Atomic and Nuclear Scattering Physics. Perhaps the most familiar example is the method of Coupled Channels. The system of coupled equations is truncated on computational reasons; the number of equations can be too large to be numerically processed. To compensate the eliminated reaction channels, the potential matrix is modified; the interaction potential has now additional terms which make it, an effective one. The formal basis for effective interaction potential is the Projector Method developed in Scattering Physics by Feshbach. The two projection operators are used to divide the set of scattering channels into two subsets:{r} \u2014 the subset of retained channels, and {e} \u2014 the subset of eliminated channels. One obtains for the retained channels an effective hamiltonian; the original \u201cbare\u201d interaction is replaced by an effective one.", 
    "editor": [
      {
        "familyName": "Remaud", 
        "givenName": "B.", 
        "type": "Person"
      }, 
      {
        "familyName": "Calboreanu", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Zoran", 
        "givenName": "V.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-2431-1_19", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-6032-2", 
        "978-1-4615-2431-1"
      ], 
      "name": "Topics in Atomic and Nuclear Collisions", 
      "type": "Book"
    }, 
    "keywords": [
      "interaction potential", 
      "effective interaction potential", 
      "Coupled Channels", 
      "reaction channels", 
      "multichannel problem", 
      "effective Hamiltonian", 
      "effective operators", 
      "projector method", 
      "matrix approach", 
      "physics", 
      "scattering problem", 
      "additional terms", 
      "Feshbach", 
      "atomic", 
      "projection operator", 
      "Hamiltonian", 
      "familiar example", 
      "channels", 
      "potential matrix", 
      "reduced s", 
      "equations", 
      "potential", 
      "interaction", 
      "terms", 
      "method", 
      "operators", 
      "obtains", 
      "system", 
      "example", 
      "matrix", 
      "approach", 
      "basis", 
      "number of equations", 
      "number", 
      "computational reasons", 
      "set", 
      "problem", 
      "reasons", 
      "formal basis", 
      "subset", 
      "Nuclear Scattering Physics", 
      "Scattering Physics"
    ], 
    "name": "Reduced S - Matrix Approach to Scattering Problems", 
    "pagination": "313-326", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005947106"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-2431-1_19"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-2431-1_19", 
      "https://app.dimensions.ai/details/publication/pub.1005947106"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_294.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4615-2431-1_19"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2431-1_19'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2431-1_19'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2431-1_19'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2431-1_19'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      23 PREDICATES      68 URIs      61 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-2431-1_19 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nf2333f59ea524da08c393a753e701afc
4 schema:datePublished 1994
5 schema:datePublishedReg 1994-01-01
6 schema:description The approach of multichannel problems in terms of reduced or effective operators is frequently used both in Atomic and Nuclear Scattering Physics. Perhaps the most familiar example is the method of Coupled Channels. The system of coupled equations is truncated on computational reasons; the number of equations can be too large to be numerically processed. To compensate the eliminated reaction channels, the potential matrix is modified; the interaction potential has now additional terms which make it, an effective one. The formal basis for effective interaction potential is the Projector Method developed in Scattering Physics by Feshbach. The two projection operators are used to divide the set of scattering channels into two subsets:{r} — the subset of retained channels, and {e} — the subset of eliminated channels. One obtains for the retained channels an effective hamiltonian; the original “bare” interaction is replaced by an effective one.
7 schema:editor N084bb18e6f8b4dd9bb858671bb8b64aa
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc12924b4087748cda349135eb5de2980
12 schema:keywords Coupled Channels
13 Feshbach
14 Hamiltonian
15 Nuclear Scattering Physics
16 Scattering Physics
17 additional terms
18 approach
19 atomic
20 basis
21 channels
22 computational reasons
23 effective Hamiltonian
24 effective interaction potential
25 effective operators
26 equations
27 example
28 familiar example
29 formal basis
30 interaction
31 interaction potential
32 matrix
33 matrix approach
34 method
35 multichannel problem
36 number
37 number of equations
38 obtains
39 operators
40 physics
41 potential
42 potential matrix
43 problem
44 projection operator
45 projector method
46 reaction channels
47 reasons
48 reduced s
49 scattering problem
50 set
51 subset
52 system
53 terms
54 schema:name Reduced S - Matrix Approach to Scattering Problems
55 schema:pagination 313-326
56 schema:productId N4e16722a16974531a09b95dbe12fa391
57 Nae2e0dbcedde4916959545dce5144ce5
58 schema:publisher Nba9c31adaf25486cb6a712da363cddee
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005947106
60 https://doi.org/10.1007/978-1-4615-2431-1_19
61 schema:sdDatePublished 2021-12-01T20:03
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N8e35b806ac30483fa310599ac5be34d5
64 schema:url https://doi.org/10.1007/978-1-4615-2431-1_19
65 sgo:license sg:explorer/license/
66 sgo:sdDataset chapters
67 rdf:type schema:Chapter
68 N084bb18e6f8b4dd9bb858671bb8b64aa rdf:first N3d04d4528e8140199055c17d543875ad
69 rdf:rest N27b36c4e23ec4c66a9173c212edaaae2
70 N27b36c4e23ec4c66a9173c212edaaae2 rdf:first N672f0c4cd82146c1a07ae70addb97557
71 rdf:rest N85b7ca6d9dbe49d881d1547f67dd443a
72 N3151ff4197e1450fafd27274a042ec83 schema:familyName Zoran
73 schema:givenName V.
74 rdf:type schema:Person
75 N3d04d4528e8140199055c17d543875ad schema:familyName Remaud
76 schema:givenName B.
77 rdf:type schema:Person
78 N4e16722a16974531a09b95dbe12fa391 schema:name dimensions_id
79 schema:value pub.1005947106
80 rdf:type schema:PropertyValue
81 N672f0c4cd82146c1a07ae70addb97557 schema:familyName Calboreanu
82 schema:givenName A.
83 rdf:type schema:Person
84 N85b7ca6d9dbe49d881d1547f67dd443a rdf:first N3151ff4197e1450fafd27274a042ec83
85 rdf:rest rdf:nil
86 N8e35b806ac30483fa310599ac5be34d5 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nae2e0dbcedde4916959545dce5144ce5 schema:name doi
89 schema:value 10.1007/978-1-4615-2431-1_19
90 rdf:type schema:PropertyValue
91 Nba9c31adaf25486cb6a712da363cddee schema:name Springer Nature
92 rdf:type schema:Organisation
93 Nc12924b4087748cda349135eb5de2980 schema:isbn 978-1-4613-6032-2
94 978-1-4615-2431-1
95 schema:name Topics in Atomic and Nuclear Collisions
96 rdf:type schema:Book
97 Nf2333f59ea524da08c393a753e701afc rdf:first sg:person.010707064705.65
98 rdf:rest rdf:nil
99 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
100 schema:name Physical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
103 schema:name Other Physical Sciences
104 rdf:type schema:DefinedTerm
105 sg:person.010707064705.65 schema:affiliation grid-institutes:grid.425264.3
106 schema:familyName Hategan
107 schema:givenName C.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707064705.65
109 rdf:type schema:Person
110 grid-institutes:grid.425264.3 schema:alternateName Institute of Atomic Physics, Bucharest, Romania
111 schema:name Institute of Atomic Physics, Bucharest, Romania
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...