Modeling Experience Using Multivariate Statistics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

Jerrold H. May , Luis G. Vargas

ABSTRACT

In an environment where dynamic planning over a rolling horizon together with system monitoring is required, such as in a production environment where lots are released on a frequent basis, an intelligent computer support system may be of particular value if it is capable of (a) recognizing the occurrence of unusual states of the shop floor, such as congestion at bottlenecks, and (b) evaluating the relative desirability of two or more possible courses of action of time. Experience equips humans with those capabilities. This paper describes how we use a multivariate statistical approach for mechanizing experience in a hybrid OR/AI shop floor planning and control system. More... »

PAGES

175-194

Book

TITLE

The Impact of Emerging Technologies on Computer Science and Operations Research

ISBN

978-1-4613-5934-0
978-1-4615-2223-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-2223-2_9

DOI

http://dx.doi.org/10.1007/978-1-4615-2223-2_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025869327


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Artificial Intelligence in Management Laboratory Joseph M. Katz Graduate School of Business, University of Pittsburgh, 15260, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.21925.3d", 
          "name": [
            "Artificial Intelligence in Management Laboratory Joseph M. Katz Graduate School of Business, University of Pittsburgh, 15260, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "May", 
        "givenName": "Jerrold H.", 
        "id": "sg:person.013113501215.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113501215.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Artificial Intelligence in Management Laboratory Joseph M. Katz Graduate School of Business, University of Pittsburgh, 15260, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.21925.3d", 
          "name": [
            "Artificial Intelligence in Management Laboratory Joseph M. Katz Graduate School of Business, University of Pittsburgh, 15260, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vargas", 
        "givenName": "Luis G.", 
        "id": "sg:person.013723757207.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013723757207.56"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "In an environment where dynamic planning over a rolling horizon together with system monitoring is required, such as in a production environment where lots are released on a frequent basis, an intelligent computer support system may be of particular value if it is capable of (a) recognizing the occurrence of unusual states of the shop floor, such as congestion at bottlenecks, and (b) evaluating the relative desirability of two or more possible courses of action of time. Experience equips humans with those capabilities. This paper describes how we use a multivariate statistical approach for mechanizing experience in a hybrid OR/AI shop floor planning and control system.", 
    "editor": [
      {
        "familyName": "Nash", 
        "givenName": "Stephen G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Sofer", 
        "givenName": "Ariela", 
        "type": "Person"
      }, 
      {
        "familyName": "Stewart", 
        "givenName": "William R.", 
        "type": "Person"
      }, 
      {
        "familyName": "Wasil", 
        "givenName": "Edward A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-2223-2_9", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-5934-0", 
        "978-1-4615-2223-2"
      ], 
      "name": "The Impact of Emerging Technologies on Computer Science and Operations Research", 
      "type": "Book"
    }, 
    "keywords": [
      "shop floor planning", 
      "computer support system", 
      "dynamic planning", 
      "system monitoring", 
      "shop floor", 
      "support system", 
      "production environment", 
      "floor planning", 
      "rolling horizon", 
      "control system", 
      "environment", 
      "planning", 
      "bottleneck", 
      "possible courses", 
      "system", 
      "congestion", 
      "frequent basis", 
      "statistical approach", 
      "capability", 
      "experience", 
      "monitoring", 
      "relative desirability", 
      "statistics", 
      "multivariate statistical approach", 
      "time", 
      "state", 
      "humans", 
      "multivariate statistics", 
      "horizon", 
      "unusual state", 
      "basis", 
      "particular value", 
      "floor", 
      "action", 
      "values", 
      "hybrids", 
      "course", 
      "desirability", 
      "occurrence", 
      "approach", 
      "paper"
    ], 
    "name": "Modeling Experience Using Multivariate Statistics", 
    "pagination": "175-194", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025869327"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-2223-2_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-2223-2_9", 
      "https://app.dimensions.ai/details/publication/pub.1025869327"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_426.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4615-2223-2_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2223-2_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2223-2_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2223-2_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-2223-2_9'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      22 PREDICATES      66 URIs      59 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-2223-2_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N66ebf19c662a48e2b581a52815a693e5
4 schema:datePublished 1995
5 schema:datePublishedReg 1995-01-01
6 schema:description In an environment where dynamic planning over a rolling horizon together with system monitoring is required, such as in a production environment where lots are released on a frequent basis, an intelligent computer support system may be of particular value if it is capable of (a) recognizing the occurrence of unusual states of the shop floor, such as congestion at bottlenecks, and (b) evaluating the relative desirability of two or more possible courses of action of time. Experience equips humans with those capabilities. This paper describes how we use a multivariate statistical approach for mechanizing experience in a hybrid OR/AI shop floor planning and control system.
7 schema:editor Nd45c06b57b0c4ebb9d660ea6c3c6b162
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N6732af08bc9e4978a842af85a1df419a
11 schema:keywords action
12 approach
13 basis
14 bottleneck
15 capability
16 computer support system
17 congestion
18 control system
19 course
20 desirability
21 dynamic planning
22 environment
23 experience
24 floor
25 floor planning
26 frequent basis
27 horizon
28 humans
29 hybrids
30 monitoring
31 multivariate statistical approach
32 multivariate statistics
33 occurrence
34 paper
35 particular value
36 planning
37 possible courses
38 production environment
39 relative desirability
40 rolling horizon
41 shop floor
42 shop floor planning
43 state
44 statistical approach
45 statistics
46 support system
47 system
48 system monitoring
49 time
50 unusual state
51 values
52 schema:name Modeling Experience Using Multivariate Statistics
53 schema:pagination 175-194
54 schema:productId Na0bc3371b22046b49e2dcb48dc4f1426
55 Na7f0f9e8e97d48f5b47df4a9210e36cb
56 schema:publisher N22e14e57193448a1aad2d1cb3285e60c
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025869327
58 https://doi.org/10.1007/978-1-4615-2223-2_9
59 schema:sdDatePublished 2022-12-01T06:53
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N7b58210623ea43f6812b2387572c2b39
62 schema:url https://doi.org/10.1007/978-1-4615-2223-2_9
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N1e0d8e295c2c45a9a61295acb0ef01d5 rdf:first N74b1ad3f841c453f88bde2c31161cfb1
67 rdf:rest Ndf973b2a6b504ac28308a60e3fe76a30
68 N22e14e57193448a1aad2d1cb3285e60c schema:name Springer Nature
69 rdf:type schema:Organisation
70 N59669718501c4f4396034de8c00e0052 schema:familyName Nash
71 schema:givenName Stephen G.
72 rdf:type schema:Person
73 N66ebf19c662a48e2b581a52815a693e5 rdf:first sg:person.013113501215.34
74 rdf:rest Nd32cf3df239d4565a6b0b3ee43550cbb
75 N6732af08bc9e4978a842af85a1df419a schema:isbn 978-1-4613-5934-0
76 978-1-4615-2223-2
77 schema:name The Impact of Emerging Technologies on Computer Science and Operations Research
78 rdf:type schema:Book
79 N6b47e286b20b40f9a46accd622a2d20b schema:familyName Wasil
80 schema:givenName Edward A.
81 rdf:type schema:Person
82 N74b1ad3f841c453f88bde2c31161cfb1 schema:familyName Stewart
83 schema:givenName William R.
84 rdf:type schema:Person
85 N7b58210623ea43f6812b2387572c2b39 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Na0bc3371b22046b49e2dcb48dc4f1426 schema:name dimensions_id
88 schema:value pub.1025869327
89 rdf:type schema:PropertyValue
90 Na7f0f9e8e97d48f5b47df4a9210e36cb schema:name doi
91 schema:value 10.1007/978-1-4615-2223-2_9
92 rdf:type schema:PropertyValue
93 Ncb960a69cb5b4b46bbb22111304b7243 schema:familyName Sofer
94 schema:givenName Ariela
95 rdf:type schema:Person
96 Nd32cf3df239d4565a6b0b3ee43550cbb rdf:first sg:person.013723757207.56
97 rdf:rest rdf:nil
98 Nd45c06b57b0c4ebb9d660ea6c3c6b162 rdf:first N59669718501c4f4396034de8c00e0052
99 rdf:rest Nf3fde752828849039a0fb727d58ce4f2
100 Ndf973b2a6b504ac28308a60e3fe76a30 rdf:first N6b47e286b20b40f9a46accd622a2d20b
101 rdf:rest rdf:nil
102 Nf3fde752828849039a0fb727d58ce4f2 rdf:first Ncb960a69cb5b4b46bbb22111304b7243
103 rdf:rest N1e0d8e295c2c45a9a61295acb0ef01d5
104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information and Computing Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
108 schema:name Artificial Intelligence and Image Processing
109 rdf:type schema:DefinedTerm
110 sg:person.013113501215.34 schema:affiliation grid-institutes:grid.21925.3d
111 schema:familyName May
112 schema:givenName Jerrold H.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113501215.34
114 rdf:type schema:Person
115 sg:person.013723757207.56 schema:affiliation grid-institutes:grid.21925.3d
116 schema:familyName Vargas
117 schema:givenName Luis G.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013723757207.56
119 rdf:type schema:Person
120 grid-institutes:grid.21925.3d schema:alternateName Artificial Intelligence in Management Laboratory Joseph M. Katz Graduate School of Business, University of Pittsburgh, 15260, Pittsburgh, PA, USA
121 schema:name Artificial Intelligence in Management Laboratory Joseph M. Katz Graduate School of Business, University of Pittsburgh, 15260, Pittsburgh, PA, USA
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...