The Measurement of Photon Number States Using Cavity QED View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

Simon Brattke , Benjamin Varcoe , Herbert Walther

ABSTRACT

In two recent experiments it was demonstrated that number or Fock states can be generated. Two types of experiments have been performed. In the first one the number states are achieved in steady state via the socalled trapping states of the micromaser field. In the second experiment the number states were generated in a dynamical experiment by state reduction. In the latter case the generated field was afterwards probed by observing the dynamics of a probe atom in the field. This is the first unambiguous measurement of the purity of number states in cavity quantum electrodynamics. More... »

PAGES

419-426

References to SciGraph publications

Book

TITLE

Macroscopic Quantum Coherence and Quantum Computing

ISBN

978-1-4613-5459-8
978-1-4615-1245-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-1245-5_42

DOI

http://dx.doi.org/10.1007/978-1-4615-1245-5_42

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024881017


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Max Planck Insitute for Quantum Optics, Germany", 
            "Section Physik, Univiersit\u00e4t M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brattke", 
        "givenName": "Simon", 
        "id": "sg:person.01330022615.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330022615.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Max Planck Insitute for Quantum Optics, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varcoe", 
        "givenName": "Benjamin", 
        "id": "sg:person.011657725344.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011657725344.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Max Planck Insitute for Quantum Optics, Germany", 
            "Section Physik, Univiersit\u00e4t M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walther", 
        "givenName": "Herbert", 
        "id": "sg:person.016355234775.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/22275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010070547", 
          "https://doi.org/10.1038/22275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/22275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010070547", 
          "https://doi.org/10.1038/22275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-3978(200005)48:5/7<679::aid-prop679>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024876688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-3978(200005)48:5/7<679::aid-prop679>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024876688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(94)90268-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036169071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0030-4018(94)90268-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036169071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-3978(199811)46:6/8<897::aid-prop897>3.0.co;2-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041320135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046221246", 
          "https://doi.org/10.1038/35001526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046221246", 
          "https://doi.org/10.1038/35001526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1464-4266/2/2/316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059141040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.4547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.4547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.2783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.2783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.3506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.3506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1963.1664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061435768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.13.001078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065211989"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "In two recent experiments it was demonstrated that number or Fock states can be generated. Two types of experiments have been performed. In the first one the number states are achieved in steady state via the socalled trapping states of the micromaser field. In the second experiment the number states were generated in a dynamical experiment by state reduction. In the latter case the generated field was afterwards probed by observing the dynamics of a probe atom in the field. This is the first unambiguous measurement of the purity of number states in cavity quantum electrodynamics.", 
    "editor": [
      {
        "familyName": "Averin", 
        "givenName": "Dmitri V.", 
        "type": "Person"
      }, 
      {
        "familyName": "Ruggiero", 
        "givenName": "Berardo", 
        "type": "Person"
      }, 
      {
        "familyName": "Silvestrini", 
        "givenName": "Paolo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-1245-5_42", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-5459-8", 
        "978-1-4615-1245-5"
      ], 
      "name": "Macroscopic Quantum Coherence and Quantum Computing", 
      "type": "Book"
    }, 
    "name": "The Measurement of Photon Number States Using Cavity QED", 
    "pagination": "419-426", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024881017"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-1245-5_42"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7688b6a7d7d00f1e88aac04addd4b5cf56a845891486112338aa9ab231ec9888"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-1245-5_42", 
      "https://app.dimensions.ai/details/publication/pub.1024881017"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68959_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4615-1245-5_42"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-1245-5_42'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-1245-5_42'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-1245-5_42'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-1245-5_42'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-1245-5_42 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nc54fd30d3fcb440fa7135f73df27dc96
4 schema:citation sg:pub.10.1038/22275
5 sg:pub.10.1038/35001526
6 https://doi.org/10.1002/(sici)1521-3978(199811)46:6/8<897::aid-prop897>3.0.co;2-2
7 https://doi.org/10.1002/(sici)1521-3978(200005)48:5/7<679::aid-prop679>3.0.co;2-l
8 https://doi.org/10.1016/0030-4018(94)90268-2
9 https://doi.org/10.1088/1464-4266/2/2/316
10 https://doi.org/10.1103/physreva.36.4547
11 https://doi.org/10.1103/physrevlett.54.551
12 https://doi.org/10.1103/physrevlett.58.353
13 https://doi.org/10.1103/physrevlett.64.2783
14 https://doi.org/10.1103/physrevlett.72.3506
15 https://doi.org/10.1103/physrevlett.75.3446
16 https://doi.org/10.1103/physrevlett.77.4281
17 https://doi.org/10.1103/physrevlett.82.3795
18 https://doi.org/10.1109/proc.1963.1664
19 https://doi.org/10.1364/ol.13.001078
20 schema:datePublished 2001
21 schema:datePublishedReg 2001-01-01
22 schema:description In two recent experiments it was demonstrated that number or Fock states can be generated. Two types of experiments have been performed. In the first one the number states are achieved in steady state via the socalled trapping states of the micromaser field. In the second experiment the number states were generated in a dynamical experiment by state reduction. In the latter case the generated field was afterwards probed by observing the dynamics of a probe atom in the field. This is the first unambiguous measurement of the purity of number states in cavity quantum electrodynamics.
23 schema:editor Ne56138e2df3f45699dd7d86b93696266
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N73affbd2d686476393ac6fa218eff295
28 schema:name The Measurement of Photon Number States Using Cavity QED
29 schema:pagination 419-426
30 schema:productId N708d12b500e34beeae45115256597fb9
31 N9f09421709f8457ebdbcd2154be5e8b8
32 Nce403bc228d344d28327932940266049
33 schema:publisher Nee597c0d2fcc43dd8b2bd3b10c8a8fed
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024881017
35 https://doi.org/10.1007/978-1-4615-1245-5_42
36 schema:sdDatePublished 2019-04-16T08:56
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N3cfa83093d2f4d01804f4e09200ae304
39 schema:url https://link.springer.com/10.1007%2F978-1-4615-1245-5_42
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N165e63fcc7e442fe82baa08a411a138e rdf:first sg:person.011657725344.31
44 rdf:rest N77f00ff2332c49bc99151331f881607e
45 N2d994ccf4760462bb08e0854071031be schema:familyName Ruggiero
46 schema:givenName Berardo
47 rdf:type schema:Person
48 N2f3a9243e28e4599868bc4256ebade63 rdf:first Nbb25f9063c5943d4a9b6c31fa49ebb44
49 rdf:rest rdf:nil
50 N3cfa83093d2f4d01804f4e09200ae304 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N708d12b500e34beeae45115256597fb9 schema:name dimensions_id
53 schema:value pub.1024881017
54 rdf:type schema:PropertyValue
55 N73affbd2d686476393ac6fa218eff295 schema:isbn 978-1-4613-5459-8
56 978-1-4615-1245-5
57 schema:name Macroscopic Quantum Coherence and Quantum Computing
58 rdf:type schema:Book
59 N77f00ff2332c49bc99151331f881607e rdf:first sg:person.016355234775.61
60 rdf:rest rdf:nil
61 N9e4bd0e4fb114887b88e28b84fe8f224 rdf:first N2d994ccf4760462bb08e0854071031be
62 rdf:rest N2f3a9243e28e4599868bc4256ebade63
63 N9f09421709f8457ebdbcd2154be5e8b8 schema:name readcube_id
64 schema:value 7688b6a7d7d00f1e88aac04addd4b5cf56a845891486112338aa9ab231ec9888
65 rdf:type schema:PropertyValue
66 Nb7bd949383a941d4bd3deddb1a8a4623 schema:familyName Averin
67 schema:givenName Dmitri V.
68 rdf:type schema:Person
69 Nbb25f9063c5943d4a9b6c31fa49ebb44 schema:familyName Silvestrini
70 schema:givenName Paolo
71 rdf:type schema:Person
72 Nc54fd30d3fcb440fa7135f73df27dc96 rdf:first sg:person.01330022615.04
73 rdf:rest N165e63fcc7e442fe82baa08a411a138e
74 Nce403bc228d344d28327932940266049 schema:name doi
75 schema:value 10.1007/978-1-4615-1245-5_42
76 rdf:type schema:PropertyValue
77 Ndd9d0f23329846158621f105a64ce190 schema:name Max Planck Insitute for Quantum Optics, Germany
78 Section Physik, Univiersität München, Germany
79 rdf:type schema:Organization
80 Ne56138e2df3f45699dd7d86b93696266 rdf:first Nb7bd949383a941d4bd3deddb1a8a4623
81 rdf:rest N9e4bd0e4fb114887b88e28b84fe8f224
82 Ne6de5829706e4fad896fd234680de2ad schema:name Max Planck Insitute for Quantum Optics, Germany
83 rdf:type schema:Organization
84 Nee597c0d2fcc43dd8b2bd3b10c8a8fed schema:location Boston, MA
85 schema:name Springer US
86 rdf:type schema:Organisation
87 Nf0f01237a53c464eb2760b86e93d4b75 schema:name Max Planck Insitute for Quantum Optics, Germany
88 Section Physik, Univiersität München, Germany
89 rdf:type schema:Organization
90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
91 schema:name Physical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
94 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
95 rdf:type schema:DefinedTerm
96 sg:person.011657725344.31 schema:affiliation Ne6de5829706e4fad896fd234680de2ad
97 schema:familyName Varcoe
98 schema:givenName Benjamin
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011657725344.31
100 rdf:type schema:Person
101 sg:person.01330022615.04 schema:affiliation Ndd9d0f23329846158621f105a64ce190
102 schema:familyName Brattke
103 schema:givenName Simon
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330022615.04
105 rdf:type schema:Person
106 sg:person.016355234775.61 schema:affiliation Nf0f01237a53c464eb2760b86e93d4b75
107 schema:familyName Walther
108 schema:givenName Herbert
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61
110 rdf:type schema:Person
111 sg:pub.10.1038/22275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010070547
112 https://doi.org/10.1038/22275
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/35001526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046221246
115 https://doi.org/10.1038/35001526
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/(sici)1521-3978(199811)46:6/8<897::aid-prop897>3.0.co;2-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041320135
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/(sici)1521-3978(200005)48:5/7<679::aid-prop679>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1024876688
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0030-4018(94)90268-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036169071
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/1464-4266/2/2/316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059141040
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physreva.36.4547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060476780
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevlett.54.551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791769
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.58.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795253
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.64.2783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800690
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.72.3506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809111
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.75.3446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812069
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.77.4281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814288
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.82.3795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819422
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/proc.1963.1664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061435768
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1364/ol.13.001078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065211989
144 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...