The Measurement of Photon Number States Using Cavity QED View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

Simon Brattke , Benjamin Varcoe , Herbert Walther

ABSTRACT

In two recent experiments it was demonstrated that number or Fock states can be generated. Two types of experiments have been performed. In the first one the number states are achieved in steady state via the socalled trapping states of the micromaser field. In the second experiment the number states were generated in a dynamical experiment by state reduction. In the latter case the generated field was afterwards probed by observing the dynamics of a probe atom in the field. This is the first unambiguous measurement of the purity of number states in cavity quantum electrodynamics. More... »

PAGES

419-426

Book

TITLE

Macroscopic Quantum Coherence and Quantum Computing

ISBN

978-1-4613-5459-8
978-1-4615-1245-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-1245-5_42

DOI

http://dx.doi.org/10.1007/978-1-4615-1245-5_42

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024881017


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Section Physik, Univiersit\u00e4t M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max Planck Insitute for Quantum Optics, Germany", 
            "Section Physik, Univiersit\u00e4t M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brattke", 
        "givenName": "Simon", 
        "id": "sg:person.01330022615.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330022615.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Insitute for Quantum Optics, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max Planck Insitute for Quantum Optics, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varcoe", 
        "givenName": "Benjamin", 
        "id": "sg:person.015344412066.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015344412066.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Section Physik, Univiersit\u00e4t M\u00fcnchen, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Max Planck Insitute for Quantum Optics, Germany", 
            "Section Physik, Univiersit\u00e4t M\u00fcnchen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walther", 
        "givenName": "Herbert", 
        "id": "sg:person.016355234775.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "In two recent experiments it was demonstrated that number or Fock states can be generated. Two types of experiments have been performed. In the first one the number states are achieved in steady state via the socalled trapping states of the micromaser field. In the second experiment the number states were generated in a dynamical experiment by state reduction. In the latter case the generated field was afterwards probed by observing the dynamics of a probe atom in the field. This is the first unambiguous measurement of the purity of number states in cavity quantum electrodynamics.", 
    "editor": [
      {
        "familyName": "Averin", 
        "givenName": "Dmitri V.", 
        "type": "Person"
      }, 
      {
        "familyName": "Ruggiero", 
        "givenName": "Berardo", 
        "type": "Person"
      }, 
      {
        "familyName": "Silvestrini", 
        "givenName": "Paolo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-1245-5_42", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-5459-8", 
        "978-1-4615-1245-5"
      ], 
      "name": "Macroscopic Quantum Coherence and Quantum Computing", 
      "type": "Book"
    }, 
    "keywords": [
      "number states", 
      "cavity quantum electrodynamics", 
      "photon number states", 
      "first unambiguous measurements", 
      "quantum electrodynamics", 
      "cavity QED", 
      "micromaser field", 
      "Fock states", 
      "probe atoms", 
      "trapping states", 
      "unambiguous measurement", 
      "recent experiments", 
      "state reduction", 
      "dynamical experiments", 
      "types of experiments", 
      "field", 
      "electrodynamics", 
      "QED", 
      "latter case", 
      "measurements", 
      "state", 
      "atoms", 
      "experiments", 
      "steady state", 
      "dynamics", 
      "purity", 
      "cases", 
      "number", 
      "types", 
      "second experiment", 
      "reduction", 
      "socalled trapping states"
    ], 
    "name": "The Measurement of Photon Number States Using Cavity QED", 
    "pagination": "419-426", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024881017"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-1245-5_42"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-1245-5_42", 
      "https://app.dimensions.ai/details/publication/pub.1024881017"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_312.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4615-1245-5_42"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-1245-5_42'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-1245-5_42'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-1245-5_42'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-1245-5_42'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      23 PREDICATES      58 URIs      51 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-1245-5_42 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N75b4b2b621014c2fa2484e8d5e87118e
4 schema:datePublished 2001
5 schema:datePublishedReg 2001-01-01
6 schema:description In two recent experiments it was demonstrated that number or Fock states can be generated. Two types of experiments have been performed. In the first one the number states are achieved in steady state via the socalled trapping states of the micromaser field. In the second experiment the number states were generated in a dynamical experiment by state reduction. In the latter case the generated field was afterwards probed by observing the dynamics of a probe atom in the field. This is the first unambiguous measurement of the purity of number states in cavity quantum electrodynamics.
7 schema:editor N7a69d57bdb4746b98f2f7007058352c1
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N5e63a1ee0540477ab8cb7473a2d243ae
12 schema:keywords Fock states
13 QED
14 atoms
15 cases
16 cavity QED
17 cavity quantum electrodynamics
18 dynamical experiments
19 dynamics
20 electrodynamics
21 experiments
22 field
23 first unambiguous measurements
24 latter case
25 measurements
26 micromaser field
27 number
28 number states
29 photon number states
30 probe atoms
31 purity
32 quantum electrodynamics
33 recent experiments
34 reduction
35 second experiment
36 socalled trapping states
37 state
38 state reduction
39 steady state
40 trapping states
41 types
42 types of experiments
43 unambiguous measurement
44 schema:name The Measurement of Photon Number States Using Cavity QED
45 schema:pagination 419-426
46 schema:productId N014dff2b668a4d67a248a2335859eb49
47 N5fcc7af429914dd08f0503676ecab34f
48 schema:publisher N093316d7ea694e8889bf8da0cf332f62
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024881017
50 https://doi.org/10.1007/978-1-4615-1245-5_42
51 schema:sdDatePublished 2021-12-01T20:04
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N2682a715112d41089e685b68a4f45c62
54 schema:url https://doi.org/10.1007/978-1-4615-1245-5_42
55 sgo:license sg:explorer/license/
56 sgo:sdDataset chapters
57 rdf:type schema:Chapter
58 N014dff2b668a4d67a248a2335859eb49 schema:name dimensions_id
59 schema:value pub.1024881017
60 rdf:type schema:PropertyValue
61 N093316d7ea694e8889bf8da0cf332f62 schema:name Springer Nature
62 rdf:type schema:Organisation
63 N2682a715112d41089e685b68a4f45c62 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N2da2c2338a984086811a0ae9798c250a rdf:first sg:person.015344412066.14
66 rdf:rest N741ad74f5f4049e98f990a053622955a
67 N3e6d239748484c9aac33a1ceeaab5339 rdf:first Naac874de698942caa453709aff4d966a
68 rdf:rest Nb3f5069a23b643cd835672b1941be348
69 N5e63a1ee0540477ab8cb7473a2d243ae schema:isbn 978-1-4613-5459-8
70 978-1-4615-1245-5
71 schema:name Macroscopic Quantum Coherence and Quantum Computing
72 rdf:type schema:Book
73 N5fcc7af429914dd08f0503676ecab34f schema:name doi
74 schema:value 10.1007/978-1-4615-1245-5_42
75 rdf:type schema:PropertyValue
76 N741ad74f5f4049e98f990a053622955a rdf:first sg:person.016355234775.61
77 rdf:rest rdf:nil
78 N75b4b2b621014c2fa2484e8d5e87118e rdf:first sg:person.01330022615.04
79 rdf:rest N2da2c2338a984086811a0ae9798c250a
80 N7a69d57bdb4746b98f2f7007058352c1 rdf:first N9457ab4605604fd6b39187360ce8746e
81 rdf:rest N3e6d239748484c9aac33a1ceeaab5339
82 N9457ab4605604fd6b39187360ce8746e schema:familyName Averin
83 schema:givenName Dmitri V.
84 rdf:type schema:Person
85 N9cf14d5ce05c4ecb9355fc62cc740808 schema:familyName Silvestrini
86 schema:givenName Paolo
87 rdf:type schema:Person
88 Naac874de698942caa453709aff4d966a schema:familyName Ruggiero
89 schema:givenName Berardo
90 rdf:type schema:Person
91 Nb3f5069a23b643cd835672b1941be348 rdf:first N9cf14d5ce05c4ecb9355fc62cc740808
92 rdf:rest rdf:nil
93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
97 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
98 rdf:type schema:DefinedTerm
99 sg:person.01330022615.04 schema:affiliation grid-institutes:None
100 schema:familyName Brattke
101 schema:givenName Simon
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330022615.04
103 rdf:type schema:Person
104 sg:person.015344412066.14 schema:affiliation grid-institutes:None
105 schema:familyName Varcoe
106 schema:givenName Benjamin
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015344412066.14
108 rdf:type schema:Person
109 sg:person.016355234775.61 schema:affiliation grid-institutes:None
110 schema:familyName Walther
111 schema:givenName Herbert
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61
113 rdf:type schema:Person
114 grid-institutes:None schema:alternateName Max Planck Insitute for Quantum Optics, Germany
115 Section Physik, Univiersität München, Germany
116 schema:name Max Planck Insitute for Quantum Optics, Germany
117 Section Physik, Univiersität München, Germany
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...