On Feasibility of Interplanetary Travel: the Flight from Earth to Mars and Back View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

Angelo Miele

ABSTRACT

This paper deals with the major issues of round-trip Mars missions, namely: flight time, characteristic velocity, andmassratio. Two classes of trajectories are considered: (i) slow transfer trajectories, for which the round-trip angular travel of Earth exceeds that of the spacecraft by 360 degrees; (ii) fast transfer trajectories, for which the round-trip angular travels of Earth and spacecraft are the same.For robotic spacecraft, the best trajectory is the minimum energy trajectory, which is of type (i). For manned spacecraft, the comfort of the crew might require a trajectory of type (ii), in which a substantial decrease in flight time is achieved at the expense of a large increase in characteristic velocity and an even larger increase in mass ratio.At this time, it appears that the best policy is to continue the exploration of Mars via robotic spacecraft, since the present state of the art is not consistent with the safe and economic exploration of Mars via manned spacecraft. Major advances have yet to be achieved in three areas: spacecraft structural factors, engine specific impulses, and life support systems. More... »

PAGES

179-194

Book

TITLE

Modeling, Control and Optimization of Complex Systems

ISBN

978-1-4613-5411-6
978-1-4615-1139-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-1139-7_8

DOI

http://dx.doi.org/10.1007/978-1-4615-1139-7_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041167213


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geochemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Research Professor and Foyt Professor Emeritus, Rice University, Houston, Texas", 
          "id": "http://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Research Professor and Foyt Professor Emeritus, Rice University, Houston, Texas"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miele", 
        "givenName": "Angelo", 
        "id": "sg:person.015552732657.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "This paper deals with the major issues of round-trip Mars missions, namely: flight time, characteristic velocity, andmassratio. Two classes of trajectories are considered: (i) slow transfer trajectories, for which the round-trip angular travel of Earth exceeds that of the spacecraft by 360 degrees; (ii) fast transfer trajectories, for which the round-trip angular travels of Earth and spacecraft are the same.For robotic spacecraft, the best trajectory is the minimum energy trajectory, which is of type (i). For manned spacecraft, the comfort of the crew might require a trajectory of type (ii), in which a substantial decrease in flight time is achieved at the expense of a large increase in characteristic velocity and an even larger increase in mass ratio.At this time, it appears that the best policy is to continue the exploration of Mars via robotic spacecraft, since the present state of the art is not consistent with the safe and economic exploration of Mars via manned spacecraft. Major advances have yet to be achieved in three areas: spacecraft structural factors, engine specific impulses, and life support systems.", 
    "editor": [
      {
        "familyName": "Gong", 
        "givenName": "Weibo", 
        "type": "Person"
      }, 
      {
        "familyName": "Shi", 
        "givenName": "Leyuan", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-1139-7_8", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-5411-6", 
        "978-1-4615-1139-7"
      ], 
      "name": "Modeling, Control and Optimization of Complex Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "robotic spacecraft", 
      "exploration of Mars", 
      "Mars", 
      "economic exploration", 
      "Mars missions", 
      "Earth", 
      "large increase", 
      "spacecraft", 
      "engine specific impulse", 
      "characteristic velocity", 
      "flight time", 
      "spacecraft structural factor", 
      "exploration", 
      "minimum-energy trajectory", 
      "present state", 
      "specific impulse", 
      "angular travel", 
      "velocity", 
      "transfer trajectories", 
      "life support systems", 
      "substantial decrease", 
      "mass ratio", 
      "mission", 
      "interplanetary travel", 
      "trajectories", 
      "energy trajectories", 
      "area", 
      "major advances", 
      "time", 
      "class of trajectories", 
      "increase", 
      "flight", 
      "major issue", 
      "round-trip Mars missions", 
      "ratio", 
      "types", 
      "decrease", 
      "feasibility", 
      "comfort", 
      "support system", 
      "crew", 
      "degree", 
      "advances", 
      "system", 
      "travel", 
      "impulses", 
      "state", 
      "factors", 
      "expense", 
      "structural factors", 
      "issues", 
      "paper", 
      "best policy", 
      "art", 
      "class", 
      "policy"
    ], 
    "name": "On Feasibility of Interplanetary Travel: the Flight from Earth to Mars and Back", 
    "pagination": "179-194", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041167213"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-1139-7_8"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-1139-7_8", 
      "https://app.dimensions.ai/details/publication/pub.1041167213"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_12.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4615-1139-7_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-1139-7_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-1139-7_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-1139-7_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-1139-7_8'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      22 PREDICATES      81 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-1139-7_8 schema:about anzsrc-for:04
2 anzsrc-for:0402
3 schema:author Nefa3ebf063c44f7d816497ece471131c
4 schema:datePublished 2003
5 schema:datePublishedReg 2003-01-01
6 schema:description This paper deals with the major issues of round-trip Mars missions, namely: flight time, characteristic velocity, andmassratio. Two classes of trajectories are considered: (i) slow transfer trajectories, for which the round-trip angular travel of Earth exceeds that of the spacecraft by 360 degrees; (ii) fast transfer trajectories, for which the round-trip angular travels of Earth and spacecraft are the same.For robotic spacecraft, the best trajectory is the minimum energy trajectory, which is of type (i). For manned spacecraft, the comfort of the crew might require a trajectory of type (ii), in which a substantial decrease in flight time is achieved at the expense of a large increase in characteristic velocity and an even larger increase in mass ratio.At this time, it appears that the best policy is to continue the exploration of Mars via robotic spacecraft, since the present state of the art is not consistent with the safe and economic exploration of Mars via manned spacecraft. Major advances have yet to be achieved in three areas: spacecraft structural factors, engine specific impulses, and life support systems.
7 schema:editor N3a842e65e62d4a3d9c80168ca30d1233
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N49c60f6e48a940289f362fd766dbdcf3
11 schema:keywords Earth
12 Mars
13 Mars missions
14 advances
15 angular travel
16 area
17 art
18 best policy
19 characteristic velocity
20 class
21 class of trajectories
22 comfort
23 crew
24 decrease
25 degree
26 economic exploration
27 energy trajectories
28 engine specific impulse
29 expense
30 exploration
31 exploration of Mars
32 factors
33 feasibility
34 flight
35 flight time
36 impulses
37 increase
38 interplanetary travel
39 issues
40 large increase
41 life support systems
42 major advances
43 major issue
44 mass ratio
45 minimum-energy trajectory
46 mission
47 paper
48 policy
49 present state
50 ratio
51 robotic spacecraft
52 round-trip Mars missions
53 spacecraft
54 spacecraft structural factor
55 specific impulse
56 state
57 structural factors
58 substantial decrease
59 support system
60 system
61 time
62 trajectories
63 transfer trajectories
64 travel
65 types
66 velocity
67 schema:name On Feasibility of Interplanetary Travel: the Flight from Earth to Mars and Back
68 schema:pagination 179-194
69 schema:productId Nab16f5cbf3a840c2bda4237dd5bb96da
70 Nf823c1fb259a4faf950bcc64765ccba5
71 schema:publisher Na6b562ef0c914f68a6b8dfdb1e5ebf2f
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041167213
73 https://doi.org/10.1007/978-1-4615-1139-7_8
74 schema:sdDatePublished 2022-12-01T06:46
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N2a07f55ff3fc4ad98f6fd2da37bec7f2
77 schema:url https://doi.org/10.1007/978-1-4615-1139-7_8
78 sgo:license sg:explorer/license/
79 sgo:sdDataset chapters
80 rdf:type schema:Chapter
81 N21093db748e4485d8ba538e971751874 schema:familyName Shi
82 schema:givenName Leyuan
83 rdf:type schema:Person
84 N2a07f55ff3fc4ad98f6fd2da37bec7f2 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N3a842e65e62d4a3d9c80168ca30d1233 rdf:first Nf953659725ff43db808f94b1b9640023
87 rdf:rest N5913605774a94b139f8efe26798070a6
88 N49c60f6e48a940289f362fd766dbdcf3 schema:isbn 978-1-4613-5411-6
89 978-1-4615-1139-7
90 schema:name Modeling, Control and Optimization of Complex Systems
91 rdf:type schema:Book
92 N5913605774a94b139f8efe26798070a6 rdf:first N21093db748e4485d8ba538e971751874
93 rdf:rest rdf:nil
94 Na6b562ef0c914f68a6b8dfdb1e5ebf2f schema:name Springer Nature
95 rdf:type schema:Organisation
96 Nab16f5cbf3a840c2bda4237dd5bb96da schema:name doi
97 schema:value 10.1007/978-1-4615-1139-7_8
98 rdf:type schema:PropertyValue
99 Nefa3ebf063c44f7d816497ece471131c rdf:first sg:person.015552732657.49
100 rdf:rest rdf:nil
101 Nf823c1fb259a4faf950bcc64765ccba5 schema:name dimensions_id
102 schema:value pub.1041167213
103 rdf:type schema:PropertyValue
104 Nf953659725ff43db808f94b1b9640023 schema:familyName Gong
105 schema:givenName Weibo
106 rdf:type schema:Person
107 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
108 schema:name Earth Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0402 schema:inDefinedTermSet anzsrc-for:
111 schema:name Geochemistry
112 rdf:type schema:DefinedTerm
113 sg:person.015552732657.49 schema:affiliation grid-institutes:grid.21940.3e
114 schema:familyName Miele
115 schema:givenName Angelo
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49
117 rdf:type schema:Person
118 grid-institutes:grid.21940.3e schema:alternateName Research Professor and Foyt Professor Emeritus, Rice University, Houston, Texas
119 schema:name Research Professor and Foyt Professor Emeritus, Rice University, Houston, Texas
120 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...