Foreign DNA: Integration and Expression in Transgenic Plants View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Richard M Twyman , Ajay Kohli , Eva Stoger , Paul Christou

ABSTRACT

Gene transfer to plants is now a routine procedure, and the number of species amenable to transformation is increasing rapidly. The introduction of foreign DNA into plants allows the creation of engineered plant lines with improved production traits, resistance to pests, pathogens or herbicides, or the ability to synthesize speciality recombinant proteins such as human hormones, enzymes and antibodies. Many of these plants are now reaching commercial status (1). Although the applications of plant genetic engineering are diverse, there are only two basic strategies for stable plant transformation. The first depends on the natural ability of soil bacteria, such as Agrobacterium tumefaciens, to transfer a small segment of DNA from a resident plasmid into the plant cell (2). The second is ‘direct DNA transfer’ and encompasses a range of techniques where DNA is either physically forced into the plant cell, or the cell is persuaded to take up DNA from the surrounding medium. Examples of these techniques include particle bombardment (3), electroporation (4), the transformation of protoplasts mediated by polyethylene glycol (PEG) (5), and transformation using silicon carbide whiskers (6). More... »

PAGES

107-136

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-0721-5_6

DOI

http://dx.doi.org/10.1007/978-1-4615-0721-5_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018346474


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Molecular Biotechnology Unit, John Innes Centre, NR4 7UH, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.14830.3e", 
          "name": [
            "Molecular Biotechnology Unit, John Innes Centre, NR4 7UH, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Twyman", 
        "givenName": "Richard M", 
        "id": "sg:person.01044515747.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044515747.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Biotechnology Unit, John Innes Centre, NR4 7UH, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.14830.3e", 
          "name": [
            "Molecular Biotechnology Unit, John Innes Centre, NR4 7UH, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohli", 
        "givenName": "Ajay", 
        "id": "sg:person.01276631521.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276631521.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Biotechnology Unit, John Innes Centre, NR4 7UH, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.14830.3e", 
          "name": [
            "Molecular Biotechnology Unit, John Innes Centre, NR4 7UH, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoger", 
        "givenName": "Eva", 
        "id": "sg:person.01007173513.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007173513.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Biotechnology Unit, John Innes Centre, NR4 7UH, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.14830.3e", 
          "name": [
            "Molecular Biotechnology Unit, John Innes Centre, NR4 7UH, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Christou", 
        "givenName": "Paul", 
        "id": "sg:person.01124124312.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124124312.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "Gene transfer to plants is now a routine procedure, and the number of species amenable to transformation is increasing rapidly. The introduction of foreign DNA into plants allows the creation of engineered plant lines with improved production traits, resistance to pests, pathogens or herbicides, or the ability to synthesize speciality recombinant proteins such as human hormones, enzymes and antibodies. Many of these plants are now reaching commercial status (1). Although the applications of plant genetic engineering are diverse, there are only two basic strategies for stable plant transformation. The first depends on the natural ability of soil bacteria, such as Agrobacterium tumefaciens, to transfer a small segment of DNA from a resident plasmid into the plant cell (2). The second is \u2018direct DNA transfer\u2019 and encompasses a range of techniques where DNA is either physically forced into the plant cell, or the cell is persuaded to take up DNA from the surrounding medium. Examples of these techniques include particle bombardment (3), electroporation (4), the transformation of protoplasts mediated by polyethylene glycol (PEG) (5), and transformation using silicon carbide whiskers (6).", 
    "editor": [
      {
        "familyName": "Setlow", 
        "givenName": "Jane K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-0721-5_6", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-5210-5", 
        "978-1-4615-0721-5"
      ], 
      "name": "Genetic Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "plant cells", 
      "stable plant transformation", 
      "plant genetic engineering", 
      "improved production traits", 
      "direct DNA transfer", 
      "number of species", 
      "transformation of protoplasts", 
      "transgenic plants", 
      "plant lines", 
      "plant transformation", 
      "soil bacteria", 
      "Agrobacterium tumefaciens", 
      "foreign DNA", 
      "DNA transfer", 
      "genetic engineering", 
      "recombinant proteins", 
      "production traits", 
      "gene transfer", 
      "particle bombardment", 
      "plants", 
      "DNA", 
      "resident plasmid", 
      "polyethylene glycol", 
      "cells", 
      "natural ability", 
      "tumefaciens", 
      "protoplasts", 
      "pests", 
      "traits", 
      "human hormone", 
      "species", 
      "protein", 
      "commercial status", 
      "plasmid", 
      "enzyme", 
      "small segment", 
      "bacteria", 
      "pathogens", 
      "herbicides", 
      "expression", 
      "electroporation", 
      "range of techniques", 
      "ability", 
      "basic strategy", 
      "lines", 
      "engineering", 
      "hormone", 
      "glycol", 
      "resistance", 
      "technique", 
      "transformation", 
      "applications", 
      "silicon carbide whiskers", 
      "antibodies", 
      "transfer", 
      "segments", 
      "bombardment", 
      "integration", 
      "medium", 
      "carbide whiskers", 
      "number", 
      "range", 
      "strategies", 
      "status", 
      "whiskers", 
      "introduction", 
      "seconds", 
      "example", 
      "routine procedure", 
      "creation", 
      "procedure"
    ], 
    "name": "Foreign DNA: Integration and Expression in Transgenic Plants", 
    "pagination": "107-136", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018346474"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-0721-5_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-0721-5_6", 
      "https://app.dimensions.ai/details/publication/pub.1018346474"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_83.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4615-0721-5_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-0721-5_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-0721-5_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-0721-5_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-0721-5_6'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      22 PREDICATES      99 URIs      89 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-0721-5_6 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 anzsrc-for:0604
4 anzsrc-for:0605
5 anzsrc-for:0607
6 schema:author Nd7c00d4f9f37451c96536394380e2b13
7 schema:datePublished 2002
8 schema:datePublishedReg 2002-01-01
9 schema:description Gene transfer to plants is now a routine procedure, and the number of species amenable to transformation is increasing rapidly. The introduction of foreign DNA into plants allows the creation of engineered plant lines with improved production traits, resistance to pests, pathogens or herbicides, or the ability to synthesize speciality recombinant proteins such as human hormones, enzymes and antibodies. Many of these plants are now reaching commercial status (1). Although the applications of plant genetic engineering are diverse, there are only two basic strategies for stable plant transformation. The first depends on the natural ability of soil bacteria, such as Agrobacterium tumefaciens, to transfer a small segment of DNA from a resident plasmid into the plant cell (2). The second is ‘direct DNA transfer’ and encompasses a range of techniques where DNA is either physically forced into the plant cell, or the cell is persuaded to take up DNA from the surrounding medium. Examples of these techniques include particle bombardment (3), electroporation (4), the transformation of protoplasts mediated by polyethylene glycol (PEG) (5), and transformation using silicon carbide whiskers (6).
10 schema:editor N2b228f5a8c4e401083a1483691729428
11 schema:genre chapter
12 schema:isAccessibleForFree false
13 schema:isPartOf N1e70057b498f452486ef19ff8c42436e
14 schema:keywords Agrobacterium tumefaciens
15 DNA
16 DNA transfer
17 ability
18 antibodies
19 applications
20 bacteria
21 basic strategy
22 bombardment
23 carbide whiskers
24 cells
25 commercial status
26 creation
27 direct DNA transfer
28 electroporation
29 engineering
30 enzyme
31 example
32 expression
33 foreign DNA
34 gene transfer
35 genetic engineering
36 glycol
37 herbicides
38 hormone
39 human hormone
40 improved production traits
41 integration
42 introduction
43 lines
44 medium
45 natural ability
46 number
47 number of species
48 particle bombardment
49 pathogens
50 pests
51 plant cells
52 plant genetic engineering
53 plant lines
54 plant transformation
55 plants
56 plasmid
57 polyethylene glycol
58 procedure
59 production traits
60 protein
61 protoplasts
62 range
63 range of techniques
64 recombinant proteins
65 resident plasmid
66 resistance
67 routine procedure
68 seconds
69 segments
70 silicon carbide whiskers
71 small segment
72 soil bacteria
73 species
74 stable plant transformation
75 status
76 strategies
77 technique
78 traits
79 transfer
80 transformation
81 transformation of protoplasts
82 transgenic plants
83 tumefaciens
84 whiskers
85 schema:name Foreign DNA: Integration and Expression in Transgenic Plants
86 schema:pagination 107-136
87 schema:productId N504eaf358bd44d14a5b26536e13ba58b
88 N625f33e821104fc7b1878aa0a2b2a80b
89 schema:publisher N48568ea8ff0f49278d1ad6c4ccf89250
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018346474
91 https://doi.org/10.1007/978-1-4615-0721-5_6
92 schema:sdDatePublished 2022-11-24T21:20
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N7bc5ef42bb6648baaf98aec6c2294d0d
95 schema:url https://doi.org/10.1007/978-1-4615-0721-5_6
96 sgo:license sg:explorer/license/
97 sgo:sdDataset chapters
98 rdf:type schema:Chapter
99 N1e70057b498f452486ef19ff8c42436e schema:isbn 978-1-4613-5210-5
100 978-1-4615-0721-5
101 schema:name Genetic Engineering
102 rdf:type schema:Book
103 N2b228f5a8c4e401083a1483691729428 rdf:first Nc6029948fcc2460d8d4a27055c8060c8
104 rdf:rest rdf:nil
105 N477151f0411a4d1d9a2e3cfd612c3e39 rdf:first sg:person.01124124312.49
106 rdf:rest rdf:nil
107 N48568ea8ff0f49278d1ad6c4ccf89250 schema:name Springer Nature
108 rdf:type schema:Organisation
109 N504eaf358bd44d14a5b26536e13ba58b schema:name dimensions_id
110 schema:value pub.1018346474
111 rdf:type schema:PropertyValue
112 N625f33e821104fc7b1878aa0a2b2a80b schema:name doi
113 schema:value 10.1007/978-1-4615-0721-5_6
114 rdf:type schema:PropertyValue
115 N6ed97ed112b849d59db7b5d89a3bb653 rdf:first sg:person.01276631521.54
116 rdf:rest Nb1d498b8b8804d39959c0fa553405e6f
117 N7bc5ef42bb6648baaf98aec6c2294d0d schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 Nb1d498b8b8804d39959c0fa553405e6f rdf:first sg:person.01007173513.58
120 rdf:rest N477151f0411a4d1d9a2e3cfd612c3e39
121 Nc6029948fcc2460d8d4a27055c8060c8 schema:familyName Setlow
122 schema:givenName Jane K.
123 rdf:type schema:Person
124 Nd7c00d4f9f37451c96536394380e2b13 rdf:first sg:person.01044515747.54
125 rdf:rest N6ed97ed112b849d59db7b5d89a3bb653
126 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
127 schema:name Biological Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
130 schema:name Biochemistry and Cell Biology
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
133 schema:name Genetics
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
136 schema:name Microbiology
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
139 schema:name Plant Biology
140 rdf:type schema:DefinedTerm
141 sg:person.01007173513.58 schema:affiliation grid-institutes:grid.14830.3e
142 schema:familyName Stoger
143 schema:givenName Eva
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007173513.58
145 rdf:type schema:Person
146 sg:person.01044515747.54 schema:affiliation grid-institutes:grid.14830.3e
147 schema:familyName Twyman
148 schema:givenName Richard M
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044515747.54
150 rdf:type schema:Person
151 sg:person.01124124312.49 schema:affiliation grid-institutes:grid.14830.3e
152 schema:familyName Christou
153 schema:givenName Paul
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124124312.49
155 rdf:type schema:Person
156 sg:person.01276631521.54 schema:affiliation grid-institutes:grid.14830.3e
157 schema:familyName Kohli
158 schema:givenName Ajay
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276631521.54
160 rdf:type schema:Person
161 grid-institutes:grid.14830.3e schema:alternateName Molecular Biotechnology Unit, John Innes Centre, NR4 7UH, Norwich, UK
162 schema:name Molecular Biotechnology Unit, John Innes Centre, NR4 7UH, Norwich, UK
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...