Generation of Photon Number States on Demand View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Herbert Walther

ABSTRACT

The many applications discussed in quantum communication and quantum cryptography require sources able to produce a preset number of photons. Single photons are, for example, a necessary requirement for secure quantum communication,1–3 for quantum cryptography4 and in special cases also for quantum computing.5 However, photon fields with fixed photon numbers are also interesting from the point of view of fundamental physics since they represent the ultimate non-classical limit of radiation. When the photon number state is generated by strong coupling of excited-state atoms, a corresponding number of ground-state atoms is simultaneously populated. Such a system therefore produces a fixed number of atoms in the lower state as well. This type of atom source is a long sought after gedanken device.6 Single photons have been generated by several processes such as single-atom fluorescence,7 single-molecule fluorescence,8 two-photon down-conversion,9 Coulomb blockade of electrons,10 and one- and two-photon Fock states have been created in the micromaser.11,12 As these sources do not produce the photons on demand, they are better described as “heralded” photon sources, because they are stochastic either in the emission direction or in the time of creation. A source of single photons or even more generally Fock states created on demand has not yet been demonstrated. Cavity quantum electrodynamics (QED) provides us with both the possibility of generating a photon at a particular time and localising its emission direction. More... »

PAGES

1-8

Book

TITLE

Current Developments in Atomic, Molecular, and Chemical Physics with Applications

ISBN

978-1-4613-4930-3
978-1-4615-0115-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4615-0115-2_1

DOI

http://dx.doi.org/10.1007/978-1-4615-0115-2_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031452215


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Sektion Physik der Universit\u00e4t M\u00fcnchen and Max-Planck-Institut f\u00fcr Quantenoptik, 85748, Garching, Fed. Rep. of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Walther", 
        "givenName": "Herbert", 
        "id": "sg:person.016355234775.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/46434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000338253", 
          "https://doi.org/10.1038/46434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/46434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000338253", 
          "https://doi.org/10.1038/46434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500349708231869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000923431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35006006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003985382", 
          "https://doi.org/10.1038/35006006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35006006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003985382", 
          "https://doi.org/10.1038/35006006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.4930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004604790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.4930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004604790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00021550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006677512", 
          "https://doi.org/10.1007/pl00021550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1464-4266/1/4/323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007054371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/22275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010070547", 
          "https://doi.org/10.1038/22275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/22275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010070547", 
          "https://doi.org/10.1038/22275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.r2627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011761553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.58.r2627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011761553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340008232201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013916006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017296384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017296384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.3566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017761768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.3566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017761768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023856211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023856211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/46503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026733649", 
          "https://doi.org/10.1038/46503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/46503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026733649", 
          "https://doi.org/10.1038/46503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029922534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029922534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35102129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037067138", 
          "https://doi.org/10.1038/35102129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35102129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037067138", 
          "https://doi.org/10.1038/35102129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038879203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038879203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003400050822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039175692", 
          "https://doi.org/10.1007/s003400050822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039575561", 
          "https://doi.org/10.1038/17295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/17295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039575561", 
          "https://doi.org/10.1038/17295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1521-3978(199811)46:6/8<897::aid-prop897>3.0.co;2-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041320135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500349708231861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041994036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0030-4018(96)00621-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043193705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001459910007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044005610", 
          "https://doi.org/10.1007/s001459910007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045440845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045440845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046221246", 
          "https://doi.org/10.1038/35001526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046221246", 
          "https://doi.org/10.1038/35001526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.4293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048497677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.4293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048497677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050235144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050235144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100530050056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054520859", 
          "https://doi.org/10.1007/s100530050056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.4547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.36.4547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060476780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.56.58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060793523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.2783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.2783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.3095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.3095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.3788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.1055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.1055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.2722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.2722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.279.5348.205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062559245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.283.5410.2050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062564639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5457.1447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i1997-00150-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064234698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.8.000131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065210389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511813993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098732024"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "The many applications discussed in quantum communication and quantum cryptography require sources able to produce a preset number of photons. Single photons are, for example, a necessary requirement for secure quantum communication,1\u20133 for quantum cryptography4 and in special cases also for quantum computing.5 However, photon fields with fixed photon numbers are also interesting from the point of view of fundamental physics since they represent the ultimate non-classical limit of radiation. When the photon number state is generated by strong coupling of excited-state atoms, a corresponding number of ground-state atoms is simultaneously populated. Such a system therefore produces a fixed number of atoms in the lower state as well. This type of atom source is a long sought after gedanken device.6 Single photons have been generated by several processes such as single-atom fluorescence,7 single-molecule fluorescence,8 two-photon down-conversion,9 Coulomb blockade of electrons,10 and one- and two-photon Fock states have been created in the micromaser.11,12 As these sources do not produce the photons on demand, they are better described as \u201cheralded\u201d photon sources, because they are stochastic either in the emission direction or in the time of creation. A source of single photons or even more generally Fock states created on demand has not yet been demonstrated. Cavity quantum electrodynamics (QED) provides us with both the possibility of generating a photon at a particular time and localising its emission direction.", 
    "editor": [
      {
        "familyName": "Mohan", 
        "givenName": "Man", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4615-0115-2_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-4930-3", 
        "978-1-4615-0115-2"
      ], 
      "name": "Current Developments in Atomic, Molecular, and Chemical Physics with Applications", 
      "type": "Book"
    }, 
    "name": "Generation of Photon Number States on Demand", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031452215"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4615-0115-2_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "95d4ec503a064a2f128833692430454f932801d0e7070abc8a3dedae91708e68"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4615-0115-2_1", 
      "https://app.dimensions.ai/details/publication/pub.1031452215"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130805_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4615-0115-2_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-0115-2_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-0115-2_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-0115-2_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4615-0115-2_1'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      23 PREDICATES      72 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4615-0115-2_1 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nd65ed1f2e4de4f93811e5c6f7196456e
4 schema:citation sg:pub.10.1007/pl00021550
5 sg:pub.10.1007/s001459910007
6 sg:pub.10.1007/s003400050822
7 sg:pub.10.1007/s100530050056
8 sg:pub.10.1038/17295
9 sg:pub.10.1038/22275
10 sg:pub.10.1038/35001526
11 sg:pub.10.1038/35006006
12 sg:pub.10.1038/35102129
13 sg:pub.10.1038/46434
14 sg:pub.10.1038/46503
15 https://doi.org/10.1002/(sici)1521-3978(199811)46:6/8<897::aid-prop897>3.0.co;2-2
16 https://doi.org/10.1016/s0030-4018(96)00621-9
17 https://doi.org/10.1017/cbo9780511813993
18 https://doi.org/10.1080/09500340008232201
19 https://doi.org/10.1080/09500349708231861
20 https://doi.org/10.1080/09500349708231869
21 https://doi.org/10.1088/1464-4266/1/4/323
22 https://doi.org/10.1103/physreva.36.4547
23 https://doi.org/10.1103/physreva.57.4930
24 https://doi.org/10.1103/physreva.58.r2627
25 https://doi.org/10.1103/physrevlett.56.58
26 https://doi.org/10.1103/physrevlett.58.203
27 https://doi.org/10.1103/physrevlett.58.353
28 https://doi.org/10.1103/physrevlett.64.2783
29 https://doi.org/10.1103/physrevlett.71.3095
30 https://doi.org/10.1103/physrevlett.75.3788
31 https://doi.org/10.1103/physrevlett.76.1055
32 https://doi.org/10.1103/physrevlett.78.3221
33 https://doi.org/10.1103/physrevlett.78.4293
34 https://doi.org/10.1103/physrevlett.82.3795
35 https://doi.org/10.1103/physrevlett.83.2722
36 https://doi.org/10.1103/physrevlett.83.3566
37 https://doi.org/10.1103/physrevlett.83.4987
38 https://doi.org/10.1103/physrevlett.84.4729
39 https://doi.org/10.1103/physrevlett.84.4733
40 https://doi.org/10.1103/physrevlett.84.4737
41 https://doi.org/10.1103/physrevlett.85.2392
42 https://doi.org/10.1103/physrevlett.85.4872
43 https://doi.org/10.1103/physrevlett.86.3534
44 https://doi.org/10.1126/science.279.5348.205
45 https://doi.org/10.1126/science.283.5410.2050
46 https://doi.org/10.1126/science.287.5457.1447
47 https://doi.org/10.1209/epl/i1997-00150-y
48 https://doi.org/10.1364/oe.8.000131
49 schema:datePublished 2002
50 schema:datePublishedReg 2002-01-01
51 schema:description The many applications discussed in quantum communication and quantum cryptography require sources able to produce a preset number of photons. Single photons are, for example, a necessary requirement for secure quantum communication,1–3 for quantum cryptography4 and in special cases also for quantum computing.5 However, photon fields with fixed photon numbers are also interesting from the point of view of fundamental physics since they represent the ultimate non-classical limit of radiation. When the photon number state is generated by strong coupling of excited-state atoms, a corresponding number of ground-state atoms is simultaneously populated. Such a system therefore produces a fixed number of atoms in the lower state as well. This type of atom source is a long sought after gedanken device.6 Single photons have been generated by several processes such as single-atom fluorescence,7 single-molecule fluorescence,8 two-photon down-conversion,9 Coulomb blockade of electrons,10 and one- and two-photon Fock states have been created in the micromaser.11,12 As these sources do not produce the photons on demand, they are better described as “heralded” photon sources, because they are stochastic either in the emission direction or in the time of creation. A source of single photons or even more generally Fock states created on demand has not yet been demonstrated. Cavity quantum electrodynamics (QED) provides us with both the possibility of generating a photon at a particular time and localising its emission direction.
52 schema:editor N53980a9a76f54342bea3cfd663830779
53 schema:genre chapter
54 schema:inLanguage en
55 schema:isAccessibleForFree false
56 schema:isPartOf N2023ae62821646cca410787b4b8cc330
57 schema:name Generation of Photon Number States on Demand
58 schema:pagination 1-8
59 schema:productId N3264d8fa76184d70aac6840f2369de8d
60 N70ef86f0a87948378e67839433447124
61 Nea9794daaa1e49cb986294607f3eaf74
62 schema:publisher N313e90c9eb5847cdabb552fe0629520e
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031452215
64 https://doi.org/10.1007/978-1-4615-0115-2_1
65 schema:sdDatePublished 2019-04-16T09:14
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N75e2aace79e0436e85beb0a8bd282e8d
68 schema:url https://link.springer.com/10.1007%2F978-1-4615-0115-2_1
69 sgo:license sg:explorer/license/
70 sgo:sdDataset chapters
71 rdf:type schema:Chapter
72 N2023ae62821646cca410787b4b8cc330 schema:isbn 978-1-4613-4930-3
73 978-1-4615-0115-2
74 schema:name Current Developments in Atomic, Molecular, and Chemical Physics with Applications
75 rdf:type schema:Book
76 N313e90c9eb5847cdabb552fe0629520e schema:location Boston, MA
77 schema:name Springer US
78 rdf:type schema:Organisation
79 N3264d8fa76184d70aac6840f2369de8d schema:name doi
80 schema:value 10.1007/978-1-4615-0115-2_1
81 rdf:type schema:PropertyValue
82 N53980a9a76f54342bea3cfd663830779 rdf:first Ncc92696f681c4fbaa424de54a03f31bd
83 rdf:rest rdf:nil
84 N66db661fa4f94225a06c923a6c43e8e8 schema:name Sektion Physik der Universität München and Max-Planck-Institut für Quantenoptik, 85748, Garching, Fed. Rep. of Germany
85 rdf:type schema:Organization
86 N70ef86f0a87948378e67839433447124 schema:name dimensions_id
87 schema:value pub.1031452215
88 rdf:type schema:PropertyValue
89 N75e2aace79e0436e85beb0a8bd282e8d schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Ncc92696f681c4fbaa424de54a03f31bd schema:familyName Mohan
92 schema:givenName Man
93 rdf:type schema:Person
94 Nd65ed1f2e4de4f93811e5c6f7196456e rdf:first sg:person.016355234775.61
95 rdf:rest rdf:nil
96 Nea9794daaa1e49cb986294607f3eaf74 schema:name readcube_id
97 schema:value 95d4ec503a064a2f128833692430454f932801d0e7070abc8a3dedae91708e68
98 rdf:type schema:PropertyValue
99 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
100 schema:name Physical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
103 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
104 rdf:type schema:DefinedTerm
105 sg:person.016355234775.61 schema:affiliation N66db661fa4f94225a06c923a6c43e8e8
106 schema:familyName Walther
107 schema:givenName Herbert
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355234775.61
109 rdf:type schema:Person
110 sg:pub.10.1007/pl00021550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006677512
111 https://doi.org/10.1007/pl00021550
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s001459910007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044005610
114 https://doi.org/10.1007/s001459910007
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s003400050822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039175692
117 https://doi.org/10.1007/s003400050822
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s100530050056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054520859
120 https://doi.org/10.1007/s100530050056
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/17295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039575561
123 https://doi.org/10.1038/17295
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/22275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010070547
126 https://doi.org/10.1038/22275
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/35001526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046221246
129 https://doi.org/10.1038/35001526
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/35006006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003985382
132 https://doi.org/10.1038/35006006
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/35102129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037067138
135 https://doi.org/10.1038/35102129
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/46434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000338253
138 https://doi.org/10.1038/46434
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/46503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026733649
141 https://doi.org/10.1038/46503
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1002/(sici)1521-3978(199811)46:6/8<897::aid-prop897>3.0.co;2-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041320135
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0030-4018(96)00621-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043193705
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1017/cbo9780511813993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098732024
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1080/09500340008232201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013916006
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1080/09500349708231861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041994036
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1080/09500349708231869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000923431
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/1464-4266/1/4/323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007054371
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physreva.36.4547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060476780
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physreva.57.4930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004604790
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physreva.58.r2627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011761553
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.56.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060793523
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.58.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794958
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.58.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795253
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.64.2783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800690
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.71.3095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807934
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.75.3788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812162
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.76.1055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812530
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.78.3221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038879203
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.78.4293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048497677
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.82.3795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819422
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.83.2722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820114
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.83.3566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017761768
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.83.4987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029922534
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.84.4729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023856211
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.84.4733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017296384
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.84.4737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045440845
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.85.2392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821840
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.85.4872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050235144
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.86.3534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822899
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1126/science.279.5348.205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062559245
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1126/science.283.5410.2050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062564639
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1126/science.287.5457.1447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568514
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1209/epl/i1997-00150-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1064234698
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1364/oe.8.000131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065210389
210 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...