Reverse Engineering the 3D Structure and Sensory-Evoked Signal Flow of Rat Vibrissal Cortex View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Robert Egger , Vincent J. Dercksen , Christiaan P. J. de Kock , Marcel Oberlaender

ABSTRACT

Soma location, dendrite morphology, and synaptic innervation are key determinants of neuronal function. Unfortunately, conventional functional measurements of sensory-evoked activity in vivo yield limited structural information. In particular, when trying to infer mechanistic principles that underlie perception and behavior, interpretations from functional recordings of individual or small groups of neurons often remain ambiguous without detailed knowledge of the underlying network structures. Here we review a novel reverse engineering approach that allows investigating sensory-evoked signal flow through individual and ensembles of neurons within the context of their surrounding neural networks. To do so, spontaneous and sensory-evoked activity patterns are recorded from individual neurons in vivo. In addition, the complete 3D dendrite and axon projection patterns of such in vivo-characterized neurons are reconstructed and integrated into an anatomically realistic model of the rat vibrissal cortex. This model allows estimating the number and cell type-specific subcellular distribution of synapses on these neurons with 50 μm precision. As a result, each neuron can be described by a rich set of parameters that allows investigating structure–function relationships and simulation experiments at single-neuron and network levels. More... »

PAGES

127-145

References to SciGraph publications

Book

TITLE

The Computing Dendrite

ISBN

978-1-4614-8093-8
978-1-4614-8094-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4614-8094-5_8

DOI

http://dx.doi.org/10.1007/978-1-4614-8094-5_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016758252


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Biological Cybernetics", 
          "id": "https://www.grid.ac/institutes/grid.419501.8", 
          "name": [
            "Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Spemannstra\u00dfe 38-44, Tuebingen, 72076, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Egger", 
        "givenName": "Robert", 
        "id": "sg:person.0754730160.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754730160.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zuse Institute Berlin", 
          "id": "https://www.grid.ac/institutes/grid.425649.8", 
          "name": [
            "Department of Visualization and Data Analysis, Zuse Institute Berlin, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dercksen", 
        "givenName": "Vincent J.", 
        "id": "sg:person.01035125547.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035125547.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Amsterdam Neuroscience", 
          "id": "https://www.grid.ac/institutes/grid.484519.5", 
          "name": [
            "Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Kock", 
        "givenName": "Christiaan P. J.", 
        "id": "sg:person.0654436131.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654436131.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Biological Cybernetics", 
          "id": "https://www.grid.ac/institutes/grid.419501.8", 
          "name": [
            "Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Spemannstra\u00dfe 38-44, Tuebingen, 72076, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oberlaender", 
        "givenName": "Marcel", 
        "id": "sg:person.01330054647.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330054647.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1523/jneurosci.3762-09.2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002746161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.2003.044222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002908913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2009.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003211280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.2001.012959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003837889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.00046.2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004376181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2012.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004925354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1124593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005040700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhq067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005884647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0020329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007086000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conb.2009.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009790482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1554-08.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012091691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012798279", 
          "https://doi.org/10.1038/nature09818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0707853104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013629282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1460-9568.2010.07264.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013847180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1460-9568.2010.07264.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013847180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.903550407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015918837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(70)90079-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017236034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(70)90079-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017236034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2010.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017999804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2010.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017999804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00424-002-0831-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018841176", 
          "https://doi.org/10.1007/s00424-002-0831-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhm168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020910630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0173(79)90008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021129572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0173(79)90008-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021129572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021691703", 
          "https://doi.org/10.1038/nature07709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tins.2012.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022544990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1400-04.2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022924785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhh029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023001542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhn138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024400976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/385161a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024578450", 
          "https://doi.org/10.1038/385161a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2010.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024886226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2010.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024886226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027244641", 
          "https://doi.org/10.1038/nature07150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2011.06.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027775396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2011.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030300152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhm138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030336456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0904143106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030605659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.902630209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031428007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0270(95)00144-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033902219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2009.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034167570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00961734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035184159", 
          "https://doi.org/10.1007/bf00961734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00231659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036823471", 
          "https://doi.org/10.1007/bf00231659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00231659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036823471", 
          "https://doi.org/10.1007/bf00231659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00231659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036823471", 
          "https://doi.org/10.1007/bf00231659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1113648108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037790639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1100647108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038219422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhr317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039231077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhp152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040439776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0270(88)90114-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040509791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0270(88)90114-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040509791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conb.2009.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041315916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.2001.012334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041604615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/304182.304187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042269479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1312691110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043599590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2818.2009.03118.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044171909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cne.901660205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044388701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045945333", 
          "https://doi.org/10.1038/nature09802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046870238", 
          "https://doi.org/10.1038/nn1404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046870238", 
          "https://doi.org/10.1038/nn1404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1959.sp006308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047763294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhq069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047961212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048638086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610267104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050927564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.2210-07.2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051145603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051412071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.2006.124321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052252729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.2815693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052382172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053325052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0040124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053325052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/rd.521.0043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063183020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1957.20.4.408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075736557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1992.68.4.1438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076424573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1986.56.4.1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079949197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2009.5193216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093494920"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Soma location, dendrite morphology, and synaptic innervation are key determinants of neuronal function. Unfortunately, conventional functional measurements of sensory-evoked activity in vivo yield limited structural information. In particular, when trying to infer mechanistic principles that underlie perception and behavior, interpretations from functional recordings of individual or small groups of neurons often remain ambiguous without detailed knowledge of the underlying network structures. Here we review a novel reverse engineering approach that allows investigating sensory-evoked signal flow through individual and ensembles of neurons within the context of their surrounding neural networks. To do so, spontaneous and sensory-evoked activity patterns are recorded from individual neurons in vivo. In addition, the complete 3D dendrite and axon projection patterns of such in vivo-characterized neurons are reconstructed and integrated into an anatomically realistic model of the rat vibrissal cortex. This model allows estimating the number and cell type-specific subcellular distribution of synapses on these neurons with 50 \u03bcm precision. As a result, each neuron can be described by a rich set of parameters that allows investigating structure\u2013function relationships and simulation experiments at single-neuron and network levels.", 
    "editor": [
      {
        "familyName": "Cuntz", 
        "givenName": "Hermann", 
        "type": "Person"
      }, 
      {
        "familyName": "Remme", 
        "givenName": "Michiel W.H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Torben-Nielsen", 
        "givenName": "Benjamin", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4614-8094-5_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4614-8093-8", 
        "978-1-4614-8094-5"
      ], 
      "name": "The Computing Dendrite", 
      "type": "Book"
    }, 
    "name": "Reverse Engineering the 3D Structure and Sensory-Evoked Signal Flow of Rat Vibrissal Cortex", 
    "pagination": "127-145", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4614-8094-5_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4fd8dda93f314674eff70c7e22f20afd0f6bef5017d247dfdf61056ee714e053"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016758252"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4614-8094-5_8", 
      "https://app.dimensions.ai/details/publication/pub.1016758252"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000253.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4614-8094-5_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-8094-5_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-8094-5_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-8094-5_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-8094-5_8'


 

This table displays all metadata directly associated to this object as RDF triples.

303 TRIPLES      23 PREDICATES      91 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4614-8094-5_8 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N71b4e5dad01d495d9cd0fd2afcd567e3
4 schema:citation sg:pub.10.1007/bf00231659
5 sg:pub.10.1007/bf00961734
6 sg:pub.10.1007/s00424-002-0831-z
7 sg:pub.10.1038/385161a0
8 sg:pub.10.1038/nature07150
9 sg:pub.10.1038/nature07709
10 sg:pub.10.1038/nature09802
11 sg:pub.10.1038/nature09818
12 sg:pub.10.1038/nn1404
13 https://doi.org/10.1002/cne.901660205
14 https://doi.org/10.1002/cne.902630209
15 https://doi.org/10.1002/cne.903550407
16 https://doi.org/10.1016/0006-8993(70)90079-x
17 https://doi.org/10.1016/0165-0173(79)90008-0
18 https://doi.org/10.1016/0165-0270(88)90114-8
19 https://doi.org/10.1016/0165-0270(95)00144-1
20 https://doi.org/10.1016/j.conb.2009.03.005
21 https://doi.org/10.1016/j.conb.2009.09.003
22 https://doi.org/10.1016/j.jneumeth.2009.03.008
23 https://doi.org/10.1016/j.neunet.2011.06.013
24 https://doi.org/10.1016/j.neuron.2009.09.020
25 https://doi.org/10.1016/j.neuron.2010.08.014
26 https://doi.org/10.1016/j.neuron.2010.08.026
27 https://doi.org/10.1016/j.neuron.2011.09.020
28 https://doi.org/10.1016/j.neuron.2012.03.022
29 https://doi.org/10.1016/j.tins.2012.03.008
30 https://doi.org/10.1073/pnas.0610267104
31 https://doi.org/10.1073/pnas.0707853104
32 https://doi.org/10.1073/pnas.0904143106
33 https://doi.org/10.1073/pnas.1100647108
34 https://doi.org/10.1073/pnas.1113648108
35 https://doi.org/10.1073/pnas.1312691110
36 https://doi.org/10.1093/cercor/bhh029
37 https://doi.org/10.1093/cercor/bhm138
38 https://doi.org/10.1093/cercor/bhm168
39 https://doi.org/10.1093/cercor/bhn138
40 https://doi.org/10.1093/cercor/bhp152
41 https://doi.org/10.1093/cercor/bhq067
42 https://doi.org/10.1093/cercor/bhq069
43 https://doi.org/10.1093/cercor/bhr317
44 https://doi.org/10.1109/isbi.2009.5193216
45 https://doi.org/10.1111/j.1365-2818.2009.03118.x
46 https://doi.org/10.1111/j.1460-9568.2010.07264.x
47 https://doi.org/10.1113/jphysiol.1959.sp006308
48 https://doi.org/10.1113/jphysiol.2001.012334
49 https://doi.org/10.1113/jphysiol.2001.012959
50 https://doi.org/10.1113/jphysiol.2003.044222
51 https://doi.org/10.1113/jphysiol.2006.124321
52 https://doi.org/10.1117/1.2815693
53 https://doi.org/10.1126/science.1124593
54 https://doi.org/10.1145/304182.304187
55 https://doi.org/10.1147/rd.521.0043
56 https://doi.org/10.1152/jn.00046.2003
57 https://doi.org/10.1152/jn.1957.20.4.408
58 https://doi.org/10.1152/jn.1986.56.4.1196
59 https://doi.org/10.1152/jn.1992.68.4.1438
60 https://doi.org/10.1371/journal.pbio.0020329
61 https://doi.org/10.1371/journal.pbio.0040124
62 https://doi.org/10.1371/journal.pcbi.1002107
63 https://doi.org/10.1371/journal.pcbi.1002837
64 https://doi.org/10.1523/jneurosci.1400-04.2004
65 https://doi.org/10.1523/jneurosci.1554-08.2008
66 https://doi.org/10.1523/jneurosci.2210-07.2007
67 https://doi.org/10.1523/jneurosci.3762-09.2010
68 schema:datePublished 2014
69 schema:datePublishedReg 2014-01-01
70 schema:description Soma location, dendrite morphology, and synaptic innervation are key determinants of neuronal function. Unfortunately, conventional functional measurements of sensory-evoked activity in vivo yield limited structural information. In particular, when trying to infer mechanistic principles that underlie perception and behavior, interpretations from functional recordings of individual or small groups of neurons often remain ambiguous without detailed knowledge of the underlying network structures. Here we review a novel reverse engineering approach that allows investigating sensory-evoked signal flow through individual and ensembles of neurons within the context of their surrounding neural networks. To do so, spontaneous and sensory-evoked activity patterns are recorded from individual neurons in vivo. In addition, the complete 3D dendrite and axon projection patterns of such in vivo-characterized neurons are reconstructed and integrated into an anatomically realistic model of the rat vibrissal cortex. This model allows estimating the number and cell type-specific subcellular distribution of synapses on these neurons with 50 μm precision. As a result, each neuron can be described by a rich set of parameters that allows investigating structure–function relationships and simulation experiments at single-neuron and network levels.
71 schema:editor N0893f7989f724c51a93674286590e170
72 schema:genre chapter
73 schema:inLanguage en
74 schema:isAccessibleForFree false
75 schema:isPartOf N46964cbe7f9548a2aec39a1c0b45a701
76 schema:name Reverse Engineering the 3D Structure and Sensory-Evoked Signal Flow of Rat Vibrissal Cortex
77 schema:pagination 127-145
78 schema:productId N102f44eac6b346a5bcb1341477b180de
79 N6f26a900507c4190b50742940b9b0008
80 N9802fcb27bc94cd4b2334f64ce41f09e
81 schema:publisher Nb5f792e75a81409d9ced21c00355431e
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016758252
83 https://doi.org/10.1007/978-1-4614-8094-5_8
84 schema:sdDatePublished 2019-04-15T14:23
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N87a720b611564b67ba108aa23bc9daea
87 schema:url http://link.springer.com/10.1007/978-1-4614-8094-5_8
88 sgo:license sg:explorer/license/
89 sgo:sdDataset chapters
90 rdf:type schema:Chapter
91 N0893f7989f724c51a93674286590e170 rdf:first Nc92d01f63aab42ae812f16e517906f1e
92 rdf:rest Nc7addf86c2934b618aa134ff1e57021d
93 N102f44eac6b346a5bcb1341477b180de schema:name readcube_id
94 schema:value 4fd8dda93f314674eff70c7e22f20afd0f6bef5017d247dfdf61056ee714e053
95 rdf:type schema:PropertyValue
96 N40ca0a2db23041a09b8cfdf8227f6b7a rdf:first sg:person.0654436131.90
97 rdf:rest Nc1c6cce77a46421ba279c0aa15259308
98 N46964cbe7f9548a2aec39a1c0b45a701 schema:isbn 978-1-4614-8093-8
99 978-1-4614-8094-5
100 schema:name The Computing Dendrite
101 rdf:type schema:Book
102 N58f02c6761424b6084fe84f7908563af schema:familyName Remme
103 schema:givenName Michiel W.H.
104 rdf:type schema:Person
105 N6f26a900507c4190b50742940b9b0008 schema:name doi
106 schema:value 10.1007/978-1-4614-8094-5_8
107 rdf:type schema:PropertyValue
108 N71b4e5dad01d495d9cd0fd2afcd567e3 rdf:first sg:person.0754730160.54
109 rdf:rest Ne0a0358512a54358b439b90d47d1f519
110 N87a720b611564b67ba108aa23bc9daea schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N9802fcb27bc94cd4b2334f64ce41f09e schema:name dimensions_id
113 schema:value pub.1016758252
114 rdf:type schema:PropertyValue
115 Na5dc3da2b7694d5485b1f5f0f95991d8 rdf:first Na9c13db8cc2449aba0eaab5c6c79f2ab
116 rdf:rest rdf:nil
117 Na9c13db8cc2449aba0eaab5c6c79f2ab schema:familyName Torben-Nielsen
118 schema:givenName Benjamin
119 rdf:type schema:Person
120 Nb5f792e75a81409d9ced21c00355431e schema:location New York, NY
121 schema:name Springer New York
122 rdf:type schema:Organisation
123 Nc1c6cce77a46421ba279c0aa15259308 rdf:first sg:person.01330054647.09
124 rdf:rest rdf:nil
125 Nc7addf86c2934b618aa134ff1e57021d rdf:first N58f02c6761424b6084fe84f7908563af
126 rdf:rest Na5dc3da2b7694d5485b1f5f0f95991d8
127 Nc92d01f63aab42ae812f16e517906f1e schema:familyName Cuntz
128 schema:givenName Hermann
129 rdf:type schema:Person
130 Ne0a0358512a54358b439b90d47d1f519 rdf:first sg:person.01035125547.13
131 rdf:rest N40ca0a2db23041a09b8cfdf8227f6b7a
132 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
133 schema:name Medical and Health Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
136 schema:name Neurosciences
137 rdf:type schema:DefinedTerm
138 sg:person.01035125547.13 schema:affiliation https://www.grid.ac/institutes/grid.425649.8
139 schema:familyName Dercksen
140 schema:givenName Vincent J.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035125547.13
142 rdf:type schema:Person
143 sg:person.01330054647.09 schema:affiliation https://www.grid.ac/institutes/grid.419501.8
144 schema:familyName Oberlaender
145 schema:givenName Marcel
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01330054647.09
147 rdf:type schema:Person
148 sg:person.0654436131.90 schema:affiliation https://www.grid.ac/institutes/grid.484519.5
149 schema:familyName de Kock
150 schema:givenName Christiaan P. J.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654436131.90
152 rdf:type schema:Person
153 sg:person.0754730160.54 schema:affiliation https://www.grid.ac/institutes/grid.419501.8
154 schema:familyName Egger
155 schema:givenName Robert
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754730160.54
157 rdf:type schema:Person
158 sg:pub.10.1007/bf00231659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036823471
159 https://doi.org/10.1007/bf00231659
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/bf00961734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035184159
162 https://doi.org/10.1007/bf00961734
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s00424-002-0831-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1018841176
165 https://doi.org/10.1007/s00424-002-0831-z
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/385161a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024578450
168 https://doi.org/10.1038/385161a0
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature07150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027244641
171 https://doi.org/10.1038/nature07150
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nature07709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021691703
174 https://doi.org/10.1038/nature07709
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nature09802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045945333
177 https://doi.org/10.1038/nature09802
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nature09818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012798279
180 https://doi.org/10.1038/nature09818
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nn1404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046870238
183 https://doi.org/10.1038/nn1404
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1002/cne.901660205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044388701
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1002/cne.902630209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031428007
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1002/cne.903550407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015918837
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/0006-8993(70)90079-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017236034
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/0165-0173(79)90008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021129572
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/0165-0270(88)90114-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040509791
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/0165-0270(95)00144-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033902219
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.conb.2009.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041315916
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.conb.2009.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009790482
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.jneumeth.2009.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003211280
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.neunet.2011.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027775396
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.neuron.2009.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034167570
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.neuron.2010.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017999804
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.neuron.2010.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024886226
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.neuron.2011.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030300152
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.neuron.2012.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004925354
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.tins.2012.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022544990
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1073/pnas.0610267104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050927564
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1073/pnas.0707853104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013629282
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1073/pnas.0904143106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030605659
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1073/pnas.1100647108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038219422
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1073/pnas.1113648108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037790639
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1073/pnas.1312691110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043599590
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/cercor/bhh029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023001542
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/cercor/bhm138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030336456
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/cercor/bhm168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020910630
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/cercor/bhn138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024400976
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/cercor/bhp152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040439776
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/cercor/bhq067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005884647
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/cercor/bhq069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047961212
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/cercor/bhr317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039231077
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1109/isbi.2009.5193216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093494920
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1111/j.1365-2818.2009.03118.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044171909
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1111/j.1460-9568.2010.07264.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013847180
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1113/jphysiol.1959.sp006308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047763294
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1113/jphysiol.2001.012334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041604615
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1113/jphysiol.2001.012959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003837889
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1113/jphysiol.2003.044222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002908913
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1113/jphysiol.2006.124321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052252729
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1117/1.2815693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052382172
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1126/science.1124593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005040700
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1145/304182.304187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042269479
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1147/rd.521.0043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063183020
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1152/jn.00046.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004376181
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1152/jn.1957.20.4.408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075736557
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1152/jn.1986.56.4.1196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079949197
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1152/jn.1992.68.4.1438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076424573
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1371/journal.pbio.0020329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007086000
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1371/journal.pbio.0040124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053325052
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1371/journal.pcbi.1002107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051412071
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1371/journal.pcbi.1002837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048638086
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1523/jneurosci.1400-04.2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022924785
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1523/jneurosci.1554-08.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012091691
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1523/jneurosci.2210-07.2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051145603
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1523/jneurosci.3762-09.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002746161
294 rdf:type schema:CreativeWork
295 https://www.grid.ac/institutes/grid.419501.8 schema:alternateName Max Planck Institute for Biological Cybernetics
296 schema:name Computational Neuroanatomy Group, Max Planck Institute for Biological Cybernetics, Spemannstraße 38-44, Tuebingen, 72076, Germany
297 rdf:type schema:Organization
298 https://www.grid.ac/institutes/grid.425649.8 schema:alternateName Zuse Institute Berlin
299 schema:name Department of Visualization and Data Analysis, Zuse Institute Berlin, Berlin, Germany
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.484519.5 schema:alternateName Amsterdam Neuroscience
302 schema:name Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands
303 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...