An Assessment of Copula Functions Approach in Conjunction with Factor Model in Portfolio Credit Risk Management View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2015

AUTHORS

Lie-Jane Kao , Po-Cheng Wu , Cheng-Few Lee

ABSTRACT

In credit risk modeling, factor models, either static or dynamic, are often used to account for correlated defaults among a set of financial assets. Within the realm of factor models, default dependence is due to a set of common systemic factors. Conditional on these common factors, defaults are independent. The benefit of a factor model is straightforward coupling with a copula function to give an analytic formulation of the joint distribution of default times. However, factor models fail to account for the contagion mechanism of defaults in which a firm’s default risk increases due to their commercial or financial counterparties’ defaults. This study considers a mixture of the dynamic factor model of Duffee (Review of Financial Studies 12, 197–226, 1999) and a contagious effect in the specification of a Hawkes process, a class of counting processes which allows intensities to depend on the timing of previous events (Hawkes. Biometrika 58(1), 83–90, 1971). Using the mixture factor-contagious-effect model, Monte Carlo simulation is performed to generate default times of two hypothesized firms. More... »

PAGES

299-316

References to SciGraph publications

  • 1998-12. On cox processes and credit risky securities in REVIEW OF DERIVATIVES RESEARCH
  • Book

    TITLE

    Handbook of Financial Econometrics and Statistics

    ISBN

    978-1-4614-7749-5
    978-1-4614-7750-1

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-1-4614-7750-1_11

    DOI

    http://dx.doi.org/10.1007/978-1-4614-7750-1_11

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035295005


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1502", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Banking, Finance and Investment", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Commerce, Management, Tourism and Services", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Kainan University", 
              "id": "https://www.grid.ac/institutes/grid.445087.a", 
              "name": [
                "Department of Finance and Banking, Kainan University, Taoyuan, ROC, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kao", 
            "givenName": "Lie-Jane", 
            "id": "sg:person.015233440001.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015233440001.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kainan University", 
              "id": "https://www.grid.ac/institutes/grid.445087.a", 
              "name": [
                "Department of Finance and Banking, Kainan University, Taoyuan, ROC, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Po-Cheng", 
            "id": "sg:person.012304771247.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012304771247.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rutgers University", 
              "id": "https://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Department of Finance and Economics, Rutgers Business School, Rutgers, The State University of New Jersey, 94 Rockefeller Rd. Levin Bldg., Piscataway, NJ\u00a008854, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Cheng-Few", 
            "id": "sg:person.011212516643.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011212516643.58"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/j.1540-6261.1974.tb03058.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001824651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1540-6261.1995.tb05167.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012631339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01531332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038077310", 
              "https://doi.org/10.1007/bf01531332"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/0022-1082.00389", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043624173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jfi.2010.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044228508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1540-6261.2007.01202.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045593098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/713665832", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048316310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/58.1.83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059418003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/rfs/12.1.197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060005253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/rfs/12.4.687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060005275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/rfs/14.2.555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060005346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/rfs/hhi009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060005801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/090771272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062856693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3905/jfi.1995.408124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071558704"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3905/jfi.2000.319253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071558878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3905/jfi.2005.605423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071559055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3905/jfi.2006.656006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071559073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3905/jod.2001.319153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071559840"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015", 
        "datePublishedReg": "2015-01-01", 
        "description": "In credit risk modeling, factor models, either static or dynamic, are often used to account for correlated defaults among a set of financial assets. Within the realm of factor models, default dependence is due to a set of common systemic factors. Conditional on these common factors, defaults are independent. The benefit of a factor model is straightforward coupling with a copula function to give an analytic formulation of the joint distribution of default times. However, factor models fail to account for the contagion mechanism of defaults in which a firm\u2019s default risk increases due to their commercial or financial counterparties\u2019 defaults. This study considers a mixture of the dynamic factor model of Duffee (Review of Financial Studies 12, 197\u2013226, 1999) and a contagious effect in the specification of a Hawkes process, a class of counting processes which allows intensities to depend on the timing of previous events (Hawkes. Biometrika 58(1), 83\u201390, 1971). Using the mixture factor-contagious-effect model, Monte Carlo simulation is performed to generate default times of two hypothesized firms.", 
        "editor": [
          {
            "familyName": "Lee", 
            "givenName": "Cheng-Few", 
            "type": "Person"
          }, 
          {
            "familyName": "Lee", 
            "givenName": "John C.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-1-4614-7750-1_11", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-1-4614-7749-5", 
            "978-1-4614-7750-1"
          ], 
          "name": "Handbook of Financial Econometrics and Statistics", 
          "type": "Book"
        }, 
        "name": "An Assessment of Copula Functions Approach in Conjunction with Factor Model in Portfolio Credit Risk Management", 
        "pagination": "299-316", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-1-4614-7750-1_11"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a8210e7b238d591d777acdb0bfa783fc208d83260c99331ddc30722684b6c699"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035295005"
            ]
          }
        ], 
        "publisher": {
          "location": "New York, NY", 
          "name": "Springer New York", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-1-4614-7750-1_11", 
          "https://app.dimensions.ai/details/publication/pub.1035295005"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T23:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000265.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-1-4614-7750-1_11"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-7750-1_11'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-7750-1_11'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-7750-1_11'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-7750-1_11'


     

    This table displays all metadata directly associated to this object as RDF triples.

    142 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-1-4614-7750-1_11 schema:about anzsrc-for:15
    2 anzsrc-for:1502
    3 schema:author Na1b584ff3a134bb89949059af2c26cba
    4 schema:citation sg:pub.10.1007/bf01531332
    5 https://doi.org/10.1016/j.jfi.2010.03.002
    6 https://doi.org/10.1080/713665832
    7 https://doi.org/10.1093/biomet/58.1.83
    8 https://doi.org/10.1093/rfs/12.1.197
    9 https://doi.org/10.1093/rfs/12.4.687
    10 https://doi.org/10.1093/rfs/14.2.555
    11 https://doi.org/10.1093/rfs/hhi009
    12 https://doi.org/10.1111/0022-1082.00389
    13 https://doi.org/10.1111/j.1540-6261.1974.tb03058.x
    14 https://doi.org/10.1111/j.1540-6261.1995.tb05167.x
    15 https://doi.org/10.1111/j.1540-6261.2007.01202.x
    16 https://doi.org/10.1137/090771272
    17 https://doi.org/10.3905/jfi.1995.408124
    18 https://doi.org/10.3905/jfi.2000.319253
    19 https://doi.org/10.3905/jfi.2005.605423
    20 https://doi.org/10.3905/jfi.2006.656006
    21 https://doi.org/10.3905/jod.2001.319153
    22 schema:datePublished 2015
    23 schema:datePublishedReg 2015-01-01
    24 schema:description In credit risk modeling, factor models, either static or dynamic, are often used to account for correlated defaults among a set of financial assets. Within the realm of factor models, default dependence is due to a set of common systemic factors. Conditional on these common factors, defaults are independent. The benefit of a factor model is straightforward coupling with a copula function to give an analytic formulation of the joint distribution of default times. However, factor models fail to account for the contagion mechanism of defaults in which a firm’s default risk increases due to their commercial or financial counterparties’ defaults. This study considers a mixture of the dynamic factor model of Duffee (Review of Financial Studies 12, 197–226, 1999) and a contagious effect in the specification of a Hawkes process, a class of counting processes which allows intensities to depend on the timing of previous events (Hawkes. Biometrika 58(1), 83–90, 1971). Using the mixture factor-contagious-effect model, Monte Carlo simulation is performed to generate default times of two hypothesized firms.
    25 schema:editor N7fb45da1124c43ab9fb389b565865d82
    26 schema:genre chapter
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf N74a8082d143943ecb0b8a7f657da0c69
    30 schema:name An Assessment of Copula Functions Approach in Conjunction with Factor Model in Portfolio Credit Risk Management
    31 schema:pagination 299-316
    32 schema:productId N238bef2d91214a19b51e699a1f6c0855
    33 N2cadc208b16a4c92b1dc4ffc1e8eb463
    34 N8f3eb6ad37a843729d1b496afc535a82
    35 schema:publisher N22fd132878a74f31b55e9a02e56646a8
    36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035295005
    37 https://doi.org/10.1007/978-1-4614-7750-1_11
    38 schema:sdDatePublished 2019-04-15T23:53
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N55eb2a676e8d4a85be2d6cce19e6694a
    41 schema:url http://link.springer.com/10.1007/978-1-4614-7750-1_11
    42 sgo:license sg:explorer/license/
    43 sgo:sdDataset chapters
    44 rdf:type schema:Chapter
    45 N22fd132878a74f31b55e9a02e56646a8 schema:location New York, NY
    46 schema:name Springer New York
    47 rdf:type schema:Organisation
    48 N238bef2d91214a19b51e699a1f6c0855 schema:name readcube_id
    49 schema:value a8210e7b238d591d777acdb0bfa783fc208d83260c99331ddc30722684b6c699
    50 rdf:type schema:PropertyValue
    51 N2839b92963f041ae8ecb0d6ff3ff5457 schema:familyName Lee
    52 schema:givenName John C.
    53 rdf:type schema:Person
    54 N2cadc208b16a4c92b1dc4ffc1e8eb463 schema:name doi
    55 schema:value 10.1007/978-1-4614-7750-1_11
    56 rdf:type schema:PropertyValue
    57 N55eb2a676e8d4a85be2d6cce19e6694a schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N61d1dc90e914489fb4a6470329a5349e rdf:first sg:person.011212516643.58
    60 rdf:rest rdf:nil
    61 N74a8082d143943ecb0b8a7f657da0c69 schema:isbn 978-1-4614-7749-5
    62 978-1-4614-7750-1
    63 schema:name Handbook of Financial Econometrics and Statistics
    64 rdf:type schema:Book
    65 N7fb45da1124c43ab9fb389b565865d82 rdf:first Nda7d45073cf94e4b927e653dfb30cab4
    66 rdf:rest Nb8fadd2dceec4da6b020ff5c8af4c84e
    67 N8f3eb6ad37a843729d1b496afc535a82 schema:name dimensions_id
    68 schema:value pub.1035295005
    69 rdf:type schema:PropertyValue
    70 Na1b584ff3a134bb89949059af2c26cba rdf:first sg:person.015233440001.19
    71 rdf:rest Nedb7078f92bd4c429b0d39a14acfab54
    72 Nb8fadd2dceec4da6b020ff5c8af4c84e rdf:first N2839b92963f041ae8ecb0d6ff3ff5457
    73 rdf:rest rdf:nil
    74 Nda7d45073cf94e4b927e653dfb30cab4 schema:familyName Lee
    75 schema:givenName Cheng-Few
    76 rdf:type schema:Person
    77 Nedb7078f92bd4c429b0d39a14acfab54 rdf:first sg:person.012304771247.11
    78 rdf:rest N61d1dc90e914489fb4a6470329a5349e
    79 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Commerce, Management, Tourism and Services
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:1502 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Banking, Finance and Investment
    84 rdf:type schema:DefinedTerm
    85 sg:person.011212516643.58 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
    86 schema:familyName Lee
    87 schema:givenName Cheng-Few
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011212516643.58
    89 rdf:type schema:Person
    90 sg:person.012304771247.11 schema:affiliation https://www.grid.ac/institutes/grid.445087.a
    91 schema:familyName Wu
    92 schema:givenName Po-Cheng
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012304771247.11
    94 rdf:type schema:Person
    95 sg:person.015233440001.19 schema:affiliation https://www.grid.ac/institutes/grid.445087.a
    96 schema:familyName Kao
    97 schema:givenName Lie-Jane
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015233440001.19
    99 rdf:type schema:Person
    100 sg:pub.10.1007/bf01531332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038077310
    101 https://doi.org/10.1007/bf01531332
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/j.jfi.2010.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044228508
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1080/713665832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048316310
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1093/biomet/58.1.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059418003
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1093/rfs/12.1.197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060005253
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1093/rfs/12.4.687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060005275
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1093/rfs/14.2.555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060005346
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1093/rfs/hhi009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060005801
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1111/0022-1082.00389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043624173
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1111/j.1540-6261.1974.tb03058.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001824651
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1111/j.1540-6261.1995.tb05167.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012631339
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1111/j.1540-6261.2007.01202.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045593098
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1137/090771272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062856693
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.3905/jfi.1995.408124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071558704
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.3905/jfi.2000.319253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071558878
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.3905/jfi.2005.605423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071559055
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.3905/jfi.2006.656006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071559073
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.3905/jod.2001.319153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071559840
    136 rdf:type schema:CreativeWork
    137 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
    138 schema:name Department of Finance and Economics, Rutgers Business School, Rutgers, The State University of New Jersey, 94 Rockefeller Rd. Levin Bldg., Piscataway, NJ 08854, USA
    139 rdf:type schema:Organization
    140 https://www.grid.ac/institutes/grid.445087.a schema:alternateName Kainan University
    141 schema:name Department of Finance and Banking, Kainan University, Taoyuan, ROC, Taiwan
    142 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...