Evaluation of Genetically Engineered Crops Using Proteomics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Agnès E. Ricroch , Marcel Kuntz

ABSTRACT

Large-scale profiling techniques have been increasingly applied to the analysis of genetically engineered (GE) crop plants with regard to their food safety and nutritional equivalence. Although metabolomics are becoming the prevalent approach, proteomics are also used to detect unintended effects that may be triggered by insertion of a transgene. In this chapter we review 16 articles that used two-dimensional electrophoresis and (in most cases) peptide mass spectrometry as analytical methods for GE crops (grapevine, maize, pea, potato, rice, soybean, tomato, and wheat). Some relevant articles studying the laboratory model plant Arabidopsis thaliana are also summarized. These articles converge to show minimal unintended effects due to the transformation events. The transgenic genetic modification itself has less impact on protein content than conventional plant breeding or the environment. None of these papers has raised new safety concerns about marketed GE varieties. We also provide examples of two-dimensional electrophoresis protein analysis as an approach for detecting potential allergens in GE crop-derived food. More... »

PAGES

503-514

Book

TITLE

Proteomics in Foods

ISBN

978-1-4614-5625-4
978-1-4614-5626-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4614-5626-1_25

DOI

http://dx.doi.org/10.1007/978-1-4614-5626-1_25

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029351259


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Paris-Sud", 
          "id": "https://www.grid.ac/institutes/grid.5842.b", 
          "name": [
            "Laboratoire Ecologie, Syst\u00e9matique et Evolution (UMR 8079), Universit\u00e9 Paris-Sud/CNRS/AgroParisTech, B\u00e2t. 360, 91405\u00a0Orsay, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ricroch", 
        "givenName": "Agn\u00e8s E.", 
        "id": "sg:person.0675347417.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675347417.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Physiologie Cellulaire & V\u00e9g\u00e9tale", 
          "id": "https://www.grid.ac/institutes/grid.462518.c", 
          "name": [
            "Laboratoire de Physiologie Cellulaire V\u00e9g\u00e9tale (UMR5168), Universit\u00e9 Joseph Fourier/CNRS/CEA/INRA, 38054\u00a0Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuntz", 
        "givenName": "Marcel", 
        "id": "sg:person.0612213620.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612213620.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1248/bpb.33.1418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001017786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.200700861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002718205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.200300540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003262458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11248-010-9453-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004787391", 
          "https://doi.org/10.1007/s11248-010-9453-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.yrtph.2011.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008122243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-010-9624-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018139172", 
          "https://doi.org/10.1007/s11103-010-9624-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-010-9624-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018139172", 
          "https://doi.org/10.1007/s11103-010-9624-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-7652.2009.00487.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018503452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-7652.2009.00487.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018503452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11248-009-9266-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019738674", 
          "https://doi.org/10.1007/s11248-009-9266-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11248-009-9266-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019738674", 
          "https://doi.org/10.1007/s11248-009-9266-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.yrtph.2010.08.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020371372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.200800717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020878707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.200800717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020878707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5511/plantbiotechnology.22.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022987641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.200900111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029374739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.200900111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029374739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jprot.2010.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030837480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1673-8527(08)60154-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033258555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11103-008-9355-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035000439", 
          "https://doi.org/10.1007/s11103-008-9355-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11248-006-0012-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042372170", 
          "https://doi.org/10.1007/s11248-006-0012-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.111.173609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042458432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1673-8527(08)60155-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044640598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jprot.2010.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050569071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000102611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051784434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.105.060152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053012790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf049522e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055903227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf049522e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055903227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf052357y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055904440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf052357y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055904440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf063723w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055906341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf063723w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055906341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf202635r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055910194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jf202635r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055910194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr0705082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056291756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr800359d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056294434"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Large-scale profiling techniques have been increasingly applied to the analysis of genetically engineered (GE) crop plants with regard to their food safety and nutritional equivalence. Although metabolomics are becoming the prevalent approach, proteomics are also used to detect unintended effects that may be triggered by insertion of a transgene. In this chapter we review 16 articles that used two-dimensional electrophoresis and (in most cases) peptide mass spectrometry as analytical methods for GE crops (grapevine, maize, pea, potato, rice, soybean, tomato, and wheat). Some relevant articles studying the laboratory model plant Arabidopsis thaliana are also summarized. These articles converge to show minimal unintended effects due to the transformation events. The transgenic genetic modification itself has less impact on protein content than conventional plant breeding or the environment. None of these papers has raised new safety concerns about marketed GE varieties. We also provide examples of two-dimensional electrophoresis protein analysis as an approach for detecting potential allergens in GE crop-derived food.", 
    "editor": [
      {
        "familyName": "Toldr\u00e1", 
        "givenName": "Fidel", 
        "type": "Person"
      }, 
      {
        "familyName": "Nollet", 
        "givenName": "Leo M. L.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4614-5626-1_25", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4614-5625-4", 
        "978-1-4614-5626-1"
      ], 
      "name": "Proteomics in Foods", 
      "type": "Book"
    }, 
    "name": "Evaluation of Genetically Engineered Crops Using Proteomics", 
    "pagination": "503-514", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4614-5626-1_25"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8bd31627e225dbfd9f22c36087b2ab1d8b10e521d93b57fc074ef37d25e7c761"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029351259"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4614-5626-1_25", 
      "https://app.dimensions.ai/details/publication/pub.1029351259"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000261.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4614-5626-1_25"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-5626-1_25'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-5626-1_25'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-5626-1_25'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-5626-1_25'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      23 PREDICATES      54 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4614-5626-1_25 schema:about anzsrc-for:06
2 anzsrc-for:0607
3 schema:author N2971f4fdaf194b96bb7df29eb55629e3
4 schema:citation sg:pub.10.1007/s11103-008-9355-z
5 sg:pub.10.1007/s11103-010-9624-5
6 sg:pub.10.1007/s11248-006-0012-5
7 sg:pub.10.1007/s11248-009-9266-z
8 sg:pub.10.1007/s11248-010-9453-y
9 https://doi.org/10.1002/elps.200800717
10 https://doi.org/10.1002/pmic.200300540
11 https://doi.org/10.1002/pmic.200700861
12 https://doi.org/10.1002/pmic.200900111
13 https://doi.org/10.1016/j.jprot.2010.01.009
14 https://doi.org/10.1016/j.jprot.2010.07.012
15 https://doi.org/10.1016/j.yrtph.2010.08.019
16 https://doi.org/10.1016/j.yrtph.2011.01.008
17 https://doi.org/10.1016/s1673-8527(08)60154-x
18 https://doi.org/10.1016/s1673-8527(08)60155-1
19 https://doi.org/10.1021/jf049522e
20 https://doi.org/10.1021/jf052357y
21 https://doi.org/10.1021/jf063723w
22 https://doi.org/10.1021/jf202635r
23 https://doi.org/10.1021/pr0705082
24 https://doi.org/10.1021/pr800359d
25 https://doi.org/10.1104/pp.105.060152
26 https://doi.org/10.1104/pp.111.173609
27 https://doi.org/10.1111/j.1467-7652.2009.00487.x
28 https://doi.org/10.1159/000102611
29 https://doi.org/10.1248/bpb.33.1418
30 https://doi.org/10.5511/plantbiotechnology.22.47
31 schema:datePublished 2013
32 schema:datePublishedReg 2013-01-01
33 schema:description Large-scale profiling techniques have been increasingly applied to the analysis of genetically engineered (GE) crop plants with regard to their food safety and nutritional equivalence. Although metabolomics are becoming the prevalent approach, proteomics are also used to detect unintended effects that may be triggered by insertion of a transgene. In this chapter we review 16 articles that used two-dimensional electrophoresis and (in most cases) peptide mass spectrometry as analytical methods for GE crops (grapevine, maize, pea, potato, rice, soybean, tomato, and wheat). Some relevant articles studying the laboratory model plant Arabidopsis thaliana are also summarized. These articles converge to show minimal unintended effects due to the transformation events. The transgenic genetic modification itself has less impact on protein content than conventional plant breeding or the environment. None of these papers has raised new safety concerns about marketed GE varieties. We also provide examples of two-dimensional electrophoresis protein analysis as an approach for detecting potential allergens in GE crop-derived food.
34 schema:editor N8def75b8de654d58aa0f6baec699c3ad
35 schema:genre chapter
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N8676be200b0042d1912fcf0880393426
39 schema:name Evaluation of Genetically Engineered Crops Using Proteomics
40 schema:pagination 503-514
41 schema:productId N063bbe4473254f93bb723e846cd6fc69
42 Naa9cf0b8751846d6be8c7dc00f28b186
43 Nced8759c992940afb14632d58bc2da3b
44 schema:publisher N25d73eece28b4da9b869cce3cd7ab7d6
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029351259
46 https://doi.org/10.1007/978-1-4614-5626-1_25
47 schema:sdDatePublished 2019-04-15T13:28
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nfd10f6dd12ad44dd89e0300d124a7414
50 schema:url http://link.springer.com/10.1007/978-1-4614-5626-1_25
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N063bbe4473254f93bb723e846cd6fc69 schema:name doi
55 schema:value 10.1007/978-1-4614-5626-1_25
56 rdf:type schema:PropertyValue
57 N1894af0b09304578be7b2b12fb7b2196 schema:familyName Toldrá
58 schema:givenName Fidel
59 rdf:type schema:Person
60 N25d73eece28b4da9b869cce3cd7ab7d6 schema:location Boston, MA
61 schema:name Springer US
62 rdf:type schema:Organisation
63 N2971f4fdaf194b96bb7df29eb55629e3 rdf:first sg:person.0675347417.47
64 rdf:rest Nd1eee969b7eb48c9add5336cd8eb6135
65 N30c22b99eb3048b29dde8287e2d8b4bd rdf:first N5ec43a39231240b98043a593c29e7363
66 rdf:rest rdf:nil
67 N5ec43a39231240b98043a593c29e7363 schema:familyName Nollet
68 schema:givenName Leo M. L.
69 rdf:type schema:Person
70 N8676be200b0042d1912fcf0880393426 schema:isbn 978-1-4614-5625-4
71 978-1-4614-5626-1
72 schema:name Proteomics in Foods
73 rdf:type schema:Book
74 N8def75b8de654d58aa0f6baec699c3ad rdf:first N1894af0b09304578be7b2b12fb7b2196
75 rdf:rest N30c22b99eb3048b29dde8287e2d8b4bd
76 Naa9cf0b8751846d6be8c7dc00f28b186 schema:name dimensions_id
77 schema:value pub.1029351259
78 rdf:type schema:PropertyValue
79 Nced8759c992940afb14632d58bc2da3b schema:name readcube_id
80 schema:value 8bd31627e225dbfd9f22c36087b2ab1d8b10e521d93b57fc074ef37d25e7c761
81 rdf:type schema:PropertyValue
82 Nd1eee969b7eb48c9add5336cd8eb6135 rdf:first sg:person.0612213620.33
83 rdf:rest rdf:nil
84 Nfd10f6dd12ad44dd89e0300d124a7414 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
87 schema:name Biological Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
90 schema:name Plant Biology
91 rdf:type schema:DefinedTerm
92 sg:person.0612213620.33 schema:affiliation https://www.grid.ac/institutes/grid.462518.c
93 schema:familyName Kuntz
94 schema:givenName Marcel
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612213620.33
96 rdf:type schema:Person
97 sg:person.0675347417.47 schema:affiliation https://www.grid.ac/institutes/grid.5842.b
98 schema:familyName Ricroch
99 schema:givenName Agnès E.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675347417.47
101 rdf:type schema:Person
102 sg:pub.10.1007/s11103-008-9355-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1035000439
103 https://doi.org/10.1007/s11103-008-9355-z
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s11103-010-9624-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018139172
106 https://doi.org/10.1007/s11103-010-9624-5
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s11248-006-0012-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042372170
109 https://doi.org/10.1007/s11248-006-0012-5
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s11248-009-9266-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019738674
112 https://doi.org/10.1007/s11248-009-9266-z
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s11248-010-9453-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1004787391
115 https://doi.org/10.1007/s11248-010-9453-y
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/elps.200800717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020878707
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/pmic.200300540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003262458
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/pmic.200700861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002718205
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/pmic.200900111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029374739
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jprot.2010.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030837480
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jprot.2010.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050569071
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.yrtph.2010.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020371372
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.yrtph.2011.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008122243
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s1673-8527(08)60154-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033258555
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s1673-8527(08)60155-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044640598
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1021/jf049522e schema:sameAs https://app.dimensions.ai/details/publication/pub.1055903227
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1021/jf052357y schema:sameAs https://app.dimensions.ai/details/publication/pub.1055904440
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1021/jf063723w schema:sameAs https://app.dimensions.ai/details/publication/pub.1055906341
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1021/jf202635r schema:sameAs https://app.dimensions.ai/details/publication/pub.1055910194
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1021/pr0705082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056291756
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1021/pr800359d schema:sameAs https://app.dimensions.ai/details/publication/pub.1056294434
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1104/pp.105.060152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053012790
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1104/pp.111.173609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042458432
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1111/j.1467-7652.2009.00487.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018503452
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1159/000102611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051784434
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1248/bpb.33.1418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001017786
158 rdf:type schema:CreativeWork
159 https://doi.org/10.5511/plantbiotechnology.22.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022987641
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.462518.c schema:alternateName Laboratoire Physiologie Cellulaire & Végétale
162 schema:name Laboratoire de Physiologie Cellulaire Végétale (UMR5168), Université Joseph Fourier/CNRS/CEA/INRA, 38054 Grenoble, France
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.5842.b schema:alternateName University of Paris-Sud
165 schema:name Laboratoire Ecologie, Systématique et Evolution (UMR 8079), Université Paris-Sud/CNRS/AgroParisTech, Bât. 360, 91405 Orsay, France
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...