Digital Image Forensics: A Two-Step Approach for Identifying Source and Detecting Forgeries View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012-08-03

AUTHORS

Wiem Taktak , Jean-Luc Dugelay

ABSTRACT

Digital Image Forensics includes two main domains: source device identification and semantic modification detection. Usually, existing works address one aspect only: either source identification or either image manipulation. In this article, we investigate a new approach based on sensor noise that operates in a two-step sequence: the first one is global whereas the second one is local. During the first step, we analyze noise in order to identify the sensor. We reused the method proposed by Jessica Fridrich et al. with an improvement of it useful when only a limited number of images is available to compute noise patterns. Then, having identified the sensor, we examine more locally, using quadtree segmentation, the noise differences between the pattern noise attached to the sensor and the noise extracted from the picture under investigation in order to detect possible alterations. We assume here that the portion of the image that underwent modifications is relatively small with regards to the surface of the whole picture. Finally, we report tests on the first publically available database (i.e. the Dresden database) that makes possible further comparisons of our algorithm with other approaches. More... »

PAGES

37-51

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4

DOI

http://dx.doi.org/10.1007/978-1-4614-3501-3_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047172422


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Multimedia Communication, EURECOM, Sophia Antipolis, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "Department of Multimedia Communication, EURECOM, Sophia Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taktak", 
        "givenName": "Wiem", 
        "id": "sg:person.015001102160.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015001102160.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "2229, Route des Cr\u00eates, 06560, Sophia Antipolis, Valbonnem, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "2229, Route des Cr\u00eates, 06560, Sophia Antipolis, Valbonnem, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dugelay", 
        "givenName": "Jean-Luc", 
        "id": "sg:person.015053427343.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012-08-03", 
    "datePublishedReg": "2012-08-03", 
    "description": "Digital Image Forensics includes two main domains: source device identification and semantic modification detection. Usually, existing works address one aspect only: either source identification or either image manipulation. In this article, we investigate a new approach based on sensor noise that operates in a two-step sequence: the first one is global whereas the second one is local. During the first step, we analyze noise in order to identify the sensor. We reused the method proposed by Jessica Fridrich et al. with an improvement of it useful when only a limited number of images is available to compute noise patterns. Then, having identified the sensor, we examine more locally, using quadtree segmentation, the noise differences between the pattern noise attached to the sensor and the noise extracted from the picture under investigation in order to detect possible alterations. We assume here that the portion of the image that underwent modifications is relatively small with regards to the surface of the whole picture. Finally, we report tests on the first publically available database (i.e. the Dresden database) that makes possible further comparisons of our algorithm with other approaches.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4614-3501-3_4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4614-3500-6", 
        "978-1-4614-3501-3"
      ], 
      "name": "The Era of Interactive Media", 
      "type": "Book"
    }, 
    "keywords": [
      "digital image forensics", 
      "source device identification", 
      "Fridrich et al", 
      "image forensics", 
      "quadtree segmentation", 
      "device identification", 
      "image manipulation", 
      "pattern noise", 
      "available databases", 
      "sensor noise", 
      "modification detection", 
      "two-step approach", 
      "noise patterns", 
      "new approach", 
      "images", 
      "sensors", 
      "forgery", 
      "segmentation", 
      "forensics", 
      "second one", 
      "noise", 
      "algorithm", 
      "first step", 
      "whole picture", 
      "noise difference", 
      "database", 
      "limited number", 
      "source identification", 
      "order", 
      "detection", 
      "domain", 
      "main domains", 
      "work", 
      "identification", 
      "step", 
      "method", 
      "aspects", 
      "picture", 
      "manipulation", 
      "improvement", 
      "one", 
      "number", 
      "et al", 
      "sequence", 
      "further comparison", 
      "article", 
      "source", 
      "patterns", 
      "comparison", 
      "regard", 
      "modification", 
      "portion", 
      "test", 
      "al", 
      "investigation", 
      "differences", 
      "surface", 
      "possible alterations", 
      "approach", 
      "alterations", 
      "two-step sequence"
    ], 
    "name": "Digital Image Forensics: A Two-Step Approach for Identifying Source and Detecting Forgeries", 
    "pagination": "37-51", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047172422"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4614-3501-3_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4614-3501-3_4", 
      "https://app.dimensions.ai/details/publication/pub.1047172422"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_259.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4614-3501-3_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      22 PREDICATES      85 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4614-3501-3_4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0e9724b15de64321b3a29ae4ce9cec17
4 schema:datePublished 2012-08-03
5 schema:datePublishedReg 2012-08-03
6 schema:description Digital Image Forensics includes two main domains: source device identification and semantic modification detection. Usually, existing works address one aspect only: either source identification or either image manipulation. In this article, we investigate a new approach based on sensor noise that operates in a two-step sequence: the first one is global whereas the second one is local. During the first step, we analyze noise in order to identify the sensor. We reused the method proposed by Jessica Fridrich et al. with an improvement of it useful when only a limited number of images is available to compute noise patterns. Then, having identified the sensor, we examine more locally, using quadtree segmentation, the noise differences between the pattern noise attached to the sensor and the noise extracted from the picture under investigation in order to detect possible alterations. We assume here that the portion of the image that underwent modifications is relatively small with regards to the surface of the whole picture. Finally, we report tests on the first publically available database (i.e. the Dresden database) that makes possible further comparisons of our algorithm with other approaches.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nd16b327601e34649a5dbffa2a5bc992c
11 schema:keywords Fridrich et al
12 al
13 algorithm
14 alterations
15 approach
16 article
17 aspects
18 available databases
19 comparison
20 database
21 detection
22 device identification
23 differences
24 digital image forensics
25 domain
26 et al
27 first step
28 forensics
29 forgery
30 further comparison
31 identification
32 image forensics
33 image manipulation
34 images
35 improvement
36 investigation
37 limited number
38 main domains
39 manipulation
40 method
41 modification
42 modification detection
43 new approach
44 noise
45 noise difference
46 noise patterns
47 number
48 one
49 order
50 pattern noise
51 patterns
52 picture
53 portion
54 possible alterations
55 quadtree segmentation
56 regard
57 second one
58 segmentation
59 sensor noise
60 sensors
61 sequence
62 source
63 source device identification
64 source identification
65 step
66 surface
67 test
68 two-step approach
69 two-step sequence
70 whole picture
71 work
72 schema:name Digital Image Forensics: A Two-Step Approach for Identifying Source and Detecting Forgeries
73 schema:pagination 37-51
74 schema:productId N3adfc83d15b34ec09ed2bc5a45524b9f
75 Ne7aa80d2c4d640da9426b15dad14fd02
76 schema:publisher Nbc51f5eaab0944e391d1614464bb6d1b
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047172422
78 https://doi.org/10.1007/978-1-4614-3501-3_4
79 schema:sdDatePublished 2022-05-20T07:44
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N880d0d4e8c9c410ba0b357dd7b265162
82 schema:url https://doi.org/10.1007/978-1-4614-3501-3_4
83 sgo:license sg:explorer/license/
84 sgo:sdDataset chapters
85 rdf:type schema:Chapter
86 N0e9724b15de64321b3a29ae4ce9cec17 rdf:first sg:person.015001102160.34
87 rdf:rest Nc494e654b632417da80eaecd1dc6cc6c
88 N3adfc83d15b34ec09ed2bc5a45524b9f schema:name doi
89 schema:value 10.1007/978-1-4614-3501-3_4
90 rdf:type schema:PropertyValue
91 N880d0d4e8c9c410ba0b357dd7b265162 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Nbc51f5eaab0944e391d1614464bb6d1b schema:name Springer Nature
94 rdf:type schema:Organisation
95 Nc494e654b632417da80eaecd1dc6cc6c rdf:first sg:person.015053427343.37
96 rdf:rest rdf:nil
97 Nd16b327601e34649a5dbffa2a5bc992c schema:isbn 978-1-4614-3500-6
98 978-1-4614-3501-3
99 schema:name The Era of Interactive Media
100 rdf:type schema:Book
101 Ne7aa80d2c4d640da9426b15dad14fd02 schema:name dimensions_id
102 schema:value pub.1047172422
103 rdf:type schema:PropertyValue
104 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
105 schema:name Information and Computing Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
108 schema:name Artificial Intelligence and Image Processing
109 rdf:type schema:DefinedTerm
110 sg:person.015001102160.34 schema:affiliation grid-institutes:grid.28848.3e
111 schema:familyName Taktak
112 schema:givenName Wiem
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015001102160.34
114 rdf:type schema:Person
115 sg:person.015053427343.37 schema:affiliation grid-institutes:None
116 schema:familyName Dugelay
117 schema:givenName Jean-Luc
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37
119 rdf:type schema:Person
120 grid-institutes:None schema:alternateName 2229, Route des Crêtes, 06560, Sophia Antipolis, Valbonnem, France
121 schema:name 2229, Route des Crêtes, 06560, Sophia Antipolis, Valbonnem, France
122 rdf:type schema:Organization
123 grid-institutes:grid.28848.3e schema:alternateName Department of Multimedia Communication, EURECOM, Sophia Antipolis, France
124 schema:name Department of Multimedia Communication, EURECOM, Sophia Antipolis, France
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...