Digital Image Forensics: A Two-Step Approach for Identifying Source and Detecting Forgeries View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012-08-03

AUTHORS

Wiem Taktak , Jean-Luc Dugelay

ABSTRACT

Digital Image Forensics includes two main domains: source device identification and semantic modification detection. Usually, existing works address one aspect only: either source identification or either image manipulation. In this article, we investigate a new approach based on sensor noise that operates in a two-step sequence: the first one is global whereas the second one is local. During the first step, we analyze noise in order to identify the sensor. We reused the method proposed by Jessica Fridrich et al. with an improvement of it useful when only a limited number of images is available to compute noise patterns. Then, having identified the sensor, we examine more locally, using quadtree segmentation, the noise differences between the pattern noise attached to the sensor and the noise extracted from the picture under investigation in order to detect possible alterations. We assume here that the portion of the image that underwent modifications is relatively small with regards to the surface of the whole picture. Finally, we report tests on the first publically available database (i.e. the Dresden database) that makes possible further comparisons of our algorithm with other approaches. More... »

PAGES

37-51

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4

DOI

http://dx.doi.org/10.1007/978-1-4614-3501-3_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047172422


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Multimedia Communication, EURECOM, Sophia Antipolis, France", 
          "id": "http://www.grid.ac/institutes/grid.28848.3e", 
          "name": [
            "Department of Multimedia Communication, EURECOM, Sophia Antipolis, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taktak", 
        "givenName": "Wiem", 
        "id": "sg:person.015001102160.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015001102160.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "2229, Route des Cr\u00eates, 06560, Sophia Antipolis, Valbonnem, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "2229, Route des Cr\u00eates, 06560, Sophia Antipolis, Valbonnem, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dugelay", 
        "givenName": "Jean-Luc", 
        "id": "sg:person.015053427343.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012-08-03", 
    "datePublishedReg": "2012-08-03", 
    "description": "Digital Image Forensics includes two main domains: source device identification and semantic modification detection. Usually, existing works address one aspect only: either source identification or either image manipulation. In this article, we investigate a new approach based on sensor noise that operates in a two-step sequence: the first one is global whereas the second one is local. During the first step, we analyze noise in order to identify the sensor. We reused the method proposed by Jessica Fridrich et al. with an improvement of it useful when only a limited number of images is available to compute noise patterns. Then, having identified the sensor, we examine more locally, using quadtree segmentation, the noise differences between the pattern noise attached to the sensor and the noise extracted from the picture under investigation in order to detect possible alterations. We assume here that the portion of the image that underwent modifications is relatively small with regards to the surface of the whole picture. Finally, we report tests on the first publically available database (i.e. the Dresden database) that makes possible further comparisons of our algorithm with other approaches.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4614-3501-3_4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4614-3500-6", 
        "978-1-4614-3501-3"
      ], 
      "name": "The Era of Interactive Media", 
      "type": "Book"
    }, 
    "keywords": [
      "digital image forensics", 
      "source device identification", 
      "Fridrich et al", 
      "image forensics", 
      "quadtree segmentation", 
      "device identification", 
      "image manipulation", 
      "pattern noise", 
      "sensor noise", 
      "modification detection", 
      "two-step approach", 
      "available databases", 
      "noise patterns", 
      "new approach", 
      "images", 
      "sensors", 
      "noise difference", 
      "noise", 
      "forgery", 
      "second one", 
      "segmentation", 
      "algorithm", 
      "forensics", 
      "first step", 
      "whole picture", 
      "database", 
      "limited number", 
      "order", 
      "source identification", 
      "main domains", 
      "detection", 
      "domain", 
      "work", 
      "step", 
      "identification", 
      "method", 
      "et al", 
      "manipulation", 
      "improvement", 
      "picture", 
      "one", 
      "aspects", 
      "number", 
      "sequence", 
      "further comparison", 
      "article", 
      "source", 
      "patterns", 
      "comparison", 
      "modification", 
      "portion", 
      "regard", 
      "al", 
      "test", 
      "investigation", 
      "surface", 
      "differences", 
      "possible alterations", 
      "two-step sequence", 
      "approach", 
      "alterations", 
      "semantic modification detection", 
      "Jessica Fridrich et al", 
      "possible further comparisons"
    ], 
    "name": "Digital Image Forensics: A Two-Step Approach for Identifying Source and Detecting Forgeries", 
    "pagination": "37-51", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047172422"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4614-3501-3_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4614-3501-3_4", 
      "https://app.dimensions.ai/details/publication/pub.1047172422"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_180.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4614-3501-3_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      22 PREDICATES      88 URIs      81 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4614-3501-3_4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N7b1e21aebdae4617a13dc2c8f9c4f2fc
4 schema:datePublished 2012-08-03
5 schema:datePublishedReg 2012-08-03
6 schema:description Digital Image Forensics includes two main domains: source device identification and semantic modification detection. Usually, existing works address one aspect only: either source identification or either image manipulation. In this article, we investigate a new approach based on sensor noise that operates in a two-step sequence: the first one is global whereas the second one is local. During the first step, we analyze noise in order to identify the sensor. We reused the method proposed by Jessica Fridrich et al. with an improvement of it useful when only a limited number of images is available to compute noise patterns. Then, having identified the sensor, we examine more locally, using quadtree segmentation, the noise differences between the pattern noise attached to the sensor and the noise extracted from the picture under investigation in order to detect possible alterations. We assume here that the portion of the image that underwent modifications is relatively small with regards to the surface of the whole picture. Finally, we report tests on the first publically available database (i.e. the Dresden database) that makes possible further comparisons of our algorithm with other approaches.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N0ef2edca56be40fcbf4f14e479649582
11 schema:keywords Fridrich et al
12 Jessica Fridrich et al
13 al
14 algorithm
15 alterations
16 approach
17 article
18 aspects
19 available databases
20 comparison
21 database
22 detection
23 device identification
24 differences
25 digital image forensics
26 domain
27 et al
28 first step
29 forensics
30 forgery
31 further comparison
32 identification
33 image forensics
34 image manipulation
35 images
36 improvement
37 investigation
38 limited number
39 main domains
40 manipulation
41 method
42 modification
43 modification detection
44 new approach
45 noise
46 noise difference
47 noise patterns
48 number
49 one
50 order
51 pattern noise
52 patterns
53 picture
54 portion
55 possible alterations
56 possible further comparisons
57 quadtree segmentation
58 regard
59 second one
60 segmentation
61 semantic modification detection
62 sensor noise
63 sensors
64 sequence
65 source
66 source device identification
67 source identification
68 step
69 surface
70 test
71 two-step approach
72 two-step sequence
73 whole picture
74 work
75 schema:name Digital Image Forensics: A Two-Step Approach for Identifying Source and Detecting Forgeries
76 schema:pagination 37-51
77 schema:productId N35b05f636f004821bc56128afcc540f6
78 N6742638f620b4cd6b0e9076e6315f40d
79 schema:publisher N22863a660ea74d239665db062189813b
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047172422
81 https://doi.org/10.1007/978-1-4614-3501-3_4
82 schema:sdDatePublished 2022-01-01T19:11
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N1fa8e79280034f249973602e9c33cb3b
85 schema:url https://doi.org/10.1007/978-1-4614-3501-3_4
86 sgo:license sg:explorer/license/
87 sgo:sdDataset chapters
88 rdf:type schema:Chapter
89 N0ef2edca56be40fcbf4f14e479649582 schema:isbn 978-1-4614-3500-6
90 978-1-4614-3501-3
91 schema:name The Era of Interactive Media
92 rdf:type schema:Book
93 N1fa8e79280034f249973602e9c33cb3b schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N22863a660ea74d239665db062189813b schema:name Springer Nature
96 rdf:type schema:Organisation
97 N35b05f636f004821bc56128afcc540f6 schema:name dimensions_id
98 schema:value pub.1047172422
99 rdf:type schema:PropertyValue
100 N6742638f620b4cd6b0e9076e6315f40d schema:name doi
101 schema:value 10.1007/978-1-4614-3501-3_4
102 rdf:type schema:PropertyValue
103 N7b1e21aebdae4617a13dc2c8f9c4f2fc rdf:first sg:person.015001102160.34
104 rdf:rest N7dc55b2919864acb99222574b35b8cdf
105 N7dc55b2919864acb99222574b35b8cdf rdf:first sg:person.015053427343.37
106 rdf:rest rdf:nil
107 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
108 schema:name Information and Computing Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
111 schema:name Artificial Intelligence and Image Processing
112 rdf:type schema:DefinedTerm
113 sg:person.015001102160.34 schema:affiliation grid-institutes:grid.28848.3e
114 schema:familyName Taktak
115 schema:givenName Wiem
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015001102160.34
117 rdf:type schema:Person
118 sg:person.015053427343.37 schema:affiliation grid-institutes:None
119 schema:familyName Dugelay
120 schema:givenName Jean-Luc
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37
122 rdf:type schema:Person
123 grid-institutes:None schema:alternateName 2229, Route des Crêtes, 06560, Sophia Antipolis, Valbonnem, France
124 schema:name 2229, Route des Crêtes, 06560, Sophia Antipolis, Valbonnem, France
125 rdf:type schema:Organization
126 grid-institutes:grid.28848.3e schema:alternateName Department of Multimedia Communication, EURECOM, Sophia Antipolis, France
127 schema:name Department of Multimedia Communication, EURECOM, Sophia Antipolis, France
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...