Ontology type: schema:Chapter
2012-08-03
AUTHORSWiem Taktak , Jean-Luc Dugelay
ABSTRACTDigital Image Forensics includes two main domains: source device identification and semantic modification detection. Usually, existing works address one aspect only: either source identification or either image manipulation. In this article, we investigate a new approach based on sensor noise that operates in a two-step sequence: the first one is global whereas the second one is local. During the first step, we analyze noise in order to identify the sensor. We reused the method proposed by Jessica Fridrich et al. with an improvement of it useful when only a limited number of images is available to compute noise patterns. Then, having identified the sensor, we examine more locally, using quadtree segmentation, the noise differences between the pattern noise attached to the sensor and the noise extracted from the picture under investigation in order to detect possible alterations. We assume here that the portion of the image that underwent modifications is relatively small with regards to the surface of the whole picture. Finally, we report tests on the first publically available database (i.e. the Dresden database) that makes possible further comparisons of our algorithm with other approaches. More... »
PAGES37-51
The Era of Interactive Media
ISBN
978-1-4614-3500-6
978-1-4614-3501-3
http://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4
DOIhttp://dx.doi.org/10.1007/978-1-4614-3501-3_4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1047172422
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Multimedia Communication, EURECOM, Sophia Antipolis, France",
"id": "http://www.grid.ac/institutes/grid.28848.3e",
"name": [
"Department of Multimedia Communication, EURECOM, Sophia Antipolis, France"
],
"type": "Organization"
},
"familyName": "Taktak",
"givenName": "Wiem",
"id": "sg:person.015001102160.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015001102160.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "2229, Route des Cr\u00eates, 06560, Sophia Antipolis, Valbonnem, France",
"id": "http://www.grid.ac/institutes/None",
"name": [
"2229, Route des Cr\u00eates, 06560, Sophia Antipolis, Valbonnem, France"
],
"type": "Organization"
},
"familyName": "Dugelay",
"givenName": "Jean-Luc",
"id": "sg:person.015053427343.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37"
],
"type": "Person"
}
],
"datePublished": "2012-08-03",
"datePublishedReg": "2012-08-03",
"description": "Digital Image Forensics includes two main domains: source device identification and semantic modification detection. Usually, existing works address one aspect only: either source identification or either image manipulation. In this article, we investigate a new approach based on sensor noise that operates in a two-step sequence: the first one is global whereas the second one is local. During the first step, we analyze noise in order to identify the sensor. We reused the method proposed by Jessica Fridrich et al. with an improvement of it useful when only a limited number of images is available to compute noise patterns. Then, having identified the sensor, we examine more locally, using quadtree segmentation, the noise differences between the pattern noise attached to the sensor and the noise extracted from the picture under investigation in order to detect possible alterations. We assume here that the portion of the image that underwent modifications is relatively small with regards to the surface of the whole picture. Finally, we report tests on the first publically available database (i.e. the Dresden database) that makes possible further comparisons of our algorithm with other approaches.",
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-4614-3501-3_4",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-1-4614-3500-6",
"978-1-4614-3501-3"
],
"name": "The Era of Interactive Media",
"type": "Book"
},
"keywords": [
"digital image forensics",
"source device identification",
"Fridrich et al",
"image forensics",
"quadtree segmentation",
"device identification",
"image manipulation",
"pattern noise",
"available databases",
"sensor noise",
"modification detection",
"two-step approach",
"noise patterns",
"new approach",
"images",
"sensors",
"forgery",
"segmentation",
"forensics",
"second one",
"noise",
"algorithm",
"first step",
"whole picture",
"noise difference",
"database",
"limited number",
"source identification",
"order",
"detection",
"domain",
"main domains",
"work",
"identification",
"step",
"method",
"aspects",
"picture",
"manipulation",
"improvement",
"one",
"number",
"et al",
"sequence",
"further comparison",
"article",
"source",
"patterns",
"comparison",
"regard",
"modification",
"portion",
"test",
"al",
"investigation",
"differences",
"surface",
"possible alterations",
"approach",
"alterations",
"two-step sequence"
],
"name": "Digital Image Forensics: A Two-Step Approach for Identifying Source and Detecting Forgeries",
"pagination": "37-51",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1047172422"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-4614-3501-3_4"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-4614-3501-3_4",
"https://app.dimensions.ai/details/publication/pub.1047172422"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:44",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_259.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-1-4614-3501-3_4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4614-3501-3_4'
This table displays all metadata directly associated to this object as RDF triples.
125 TRIPLES
22 PREDICATES
85 URIs
78 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-1-4614-3501-3_4 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0801 |
3 | ″ | schema:author | N0e9724b15de64321b3a29ae4ce9cec17 |
4 | ″ | schema:datePublished | 2012-08-03 |
5 | ″ | schema:datePublishedReg | 2012-08-03 |
6 | ″ | schema:description | Digital Image Forensics includes two main domains: source device identification and semantic modification detection. Usually, existing works address one aspect only: either source identification or either image manipulation. In this article, we investigate a new approach based on sensor noise that operates in a two-step sequence: the first one is global whereas the second one is local. During the first step, we analyze noise in order to identify the sensor. We reused the method proposed by Jessica Fridrich et al. with an improvement of it useful when only a limited number of images is available to compute noise patterns. Then, having identified the sensor, we examine more locally, using quadtree segmentation, the noise differences between the pattern noise attached to the sensor and the noise extracted from the picture under investigation in order to detect possible alterations. We assume here that the portion of the image that underwent modifications is relatively small with regards to the surface of the whole picture. Finally, we report tests on the first publically available database (i.e. the Dresden database) that makes possible further comparisons of our algorithm with other approaches. |
7 | ″ | schema:genre | chapter |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | Nd16b327601e34649a5dbffa2a5bc992c |
11 | ″ | schema:keywords | Fridrich et al |
12 | ″ | ″ | al |
13 | ″ | ″ | algorithm |
14 | ″ | ″ | alterations |
15 | ″ | ″ | approach |
16 | ″ | ″ | article |
17 | ″ | ″ | aspects |
18 | ″ | ″ | available databases |
19 | ″ | ″ | comparison |
20 | ″ | ″ | database |
21 | ″ | ″ | detection |
22 | ″ | ″ | device identification |
23 | ″ | ″ | differences |
24 | ″ | ″ | digital image forensics |
25 | ″ | ″ | domain |
26 | ″ | ″ | et al |
27 | ″ | ″ | first step |
28 | ″ | ″ | forensics |
29 | ″ | ″ | forgery |
30 | ″ | ″ | further comparison |
31 | ″ | ″ | identification |
32 | ″ | ″ | image forensics |
33 | ″ | ″ | image manipulation |
34 | ″ | ″ | images |
35 | ″ | ″ | improvement |
36 | ″ | ″ | investigation |
37 | ″ | ″ | limited number |
38 | ″ | ″ | main domains |
39 | ″ | ″ | manipulation |
40 | ″ | ″ | method |
41 | ″ | ″ | modification |
42 | ″ | ″ | modification detection |
43 | ″ | ″ | new approach |
44 | ″ | ″ | noise |
45 | ″ | ″ | noise difference |
46 | ″ | ″ | noise patterns |
47 | ″ | ″ | number |
48 | ″ | ″ | one |
49 | ″ | ″ | order |
50 | ″ | ″ | pattern noise |
51 | ″ | ″ | patterns |
52 | ″ | ″ | picture |
53 | ″ | ″ | portion |
54 | ″ | ″ | possible alterations |
55 | ″ | ″ | quadtree segmentation |
56 | ″ | ″ | regard |
57 | ″ | ″ | second one |
58 | ″ | ″ | segmentation |
59 | ″ | ″ | sensor noise |
60 | ″ | ″ | sensors |
61 | ″ | ″ | sequence |
62 | ″ | ″ | source |
63 | ″ | ″ | source device identification |
64 | ″ | ″ | source identification |
65 | ″ | ″ | step |
66 | ″ | ″ | surface |
67 | ″ | ″ | test |
68 | ″ | ″ | two-step approach |
69 | ″ | ″ | two-step sequence |
70 | ″ | ″ | whole picture |
71 | ″ | ″ | work |
72 | ″ | schema:name | Digital Image Forensics: A Two-Step Approach for Identifying Source and Detecting Forgeries |
73 | ″ | schema:pagination | 37-51 |
74 | ″ | schema:productId | N3adfc83d15b34ec09ed2bc5a45524b9f |
75 | ″ | ″ | Ne7aa80d2c4d640da9426b15dad14fd02 |
76 | ″ | schema:publisher | Nbc51f5eaab0944e391d1614464bb6d1b |
77 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047172422 |
78 | ″ | ″ | https://doi.org/10.1007/978-1-4614-3501-3_4 |
79 | ″ | schema:sdDatePublished | 2022-05-20T07:44 |
80 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
81 | ″ | schema:sdPublisher | N880d0d4e8c9c410ba0b357dd7b265162 |
82 | ″ | schema:url | https://doi.org/10.1007/978-1-4614-3501-3_4 |
83 | ″ | sgo:license | sg:explorer/license/ |
84 | ″ | sgo:sdDataset | chapters |
85 | ″ | rdf:type | schema:Chapter |
86 | N0e9724b15de64321b3a29ae4ce9cec17 | rdf:first | sg:person.015001102160.34 |
87 | ″ | rdf:rest | Nc494e654b632417da80eaecd1dc6cc6c |
88 | N3adfc83d15b34ec09ed2bc5a45524b9f | schema:name | doi |
89 | ″ | schema:value | 10.1007/978-1-4614-3501-3_4 |
90 | ″ | rdf:type | schema:PropertyValue |
91 | N880d0d4e8c9c410ba0b357dd7b265162 | schema:name | Springer Nature - SN SciGraph project |
92 | ″ | rdf:type | schema:Organization |
93 | Nbc51f5eaab0944e391d1614464bb6d1b | schema:name | Springer Nature |
94 | ″ | rdf:type | schema:Organisation |
95 | Nc494e654b632417da80eaecd1dc6cc6c | rdf:first | sg:person.015053427343.37 |
96 | ″ | rdf:rest | rdf:nil |
97 | Nd16b327601e34649a5dbffa2a5bc992c | schema:isbn | 978-1-4614-3500-6 |
98 | ″ | ″ | 978-1-4614-3501-3 |
99 | ″ | schema:name | The Era of Interactive Media |
100 | ″ | rdf:type | schema:Book |
101 | Ne7aa80d2c4d640da9426b15dad14fd02 | schema:name | dimensions_id |
102 | ″ | schema:value | pub.1047172422 |
103 | ″ | rdf:type | schema:PropertyValue |
104 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Information and Computing Sciences |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | anzsrc-for:0801 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Artificial Intelligence and Image Processing |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | sg:person.015001102160.34 | schema:affiliation | grid-institutes:grid.28848.3e |
111 | ″ | schema:familyName | Taktak |
112 | ″ | schema:givenName | Wiem |
113 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015001102160.34 |
114 | ″ | rdf:type | schema:Person |
115 | sg:person.015053427343.37 | schema:affiliation | grid-institutes:None |
116 | ″ | schema:familyName | Dugelay |
117 | ″ | schema:givenName | Jean-Luc |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015053427343.37 |
119 | ″ | rdf:type | schema:Person |
120 | grid-institutes:None | schema:alternateName | 2229, Route des Crêtes, 06560, Sophia Antipolis, Valbonnem, France |
121 | ″ | schema:name | 2229, Route des Crêtes, 06560, Sophia Antipolis, Valbonnem, France |
122 | ″ | rdf:type | schema:Organization |
123 | grid-institutes:grid.28848.3e | schema:alternateName | Department of Multimedia Communication, EURECOM, Sophia Antipolis, France |
124 | ″ | schema:name | Department of Multimedia Communication, EURECOM, Sophia Antipolis, France |
125 | ″ | rdf:type | schema:Organization |