A One Dimensional Stochastic Model of Coarsening View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1992

AUTHORS

W. W. Mullins

ABSTRACT

A one dimensional model of the coarsening of intervals on a line is considered in which the boundary points between adjacent intervals execute independent random walk with a common diffusion coefficient D/2; when two boundary points meet, they coalesce into a single point that continues to execute random walk. We calculate the following quantities in the asymptotic limit of long times: 1) The average interval length (i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\;\left\langle l \right\rangle = \sqrt {\pi Dt}$$\end{document} , 2) the time-independent probability density for the reduced length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma = 1/\left\langle l \right\rangle$$\end{document} , and 3) the expected value of dl/dt for a given l, which is positive for and negative for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l > {l_c} = \sqrt {2/\pi } \left\langle l \right\rangle$$\end{document} and negative for l < lc. The model is similar to one proposed by Louat for grain growth. Although it is not a good representation of the details of most physical processes of coarsening, it is of theoretical interest since it is one of the few cases for which analytic results can be obtained. More... »

PAGES

101-105

Book

TITLE

On the Evolution of Phase Boundaries

ISBN

978-1-4613-9213-2
978-1-4613-9211-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-9211-8_7

DOI

http://dx.doi.org/10.1007/978-1-4613-9211-8_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016403566


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Metallurgical Engineering and Materials Science, Carnegie Mellon University, 8309 Wean Hall, 15213, Pittsburgh, PA, USA", 
          "id": "http://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Department of Metallurgical Engineering and Materials Science, Carnegie Mellon University, 8309 Wean Hall, 15213, Pittsburgh, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mullins", 
        "givenName": "W. W.", 
        "id": "sg:person.013517176323.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517176323.92"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1992", 
    "datePublishedReg": "1992-01-01", 
    "description": "A one dimensional model of the coarsening of intervals on a line is considered in which the boundary points between adjacent intervals execute independent random walk with a common diffusion coefficient D/2; when two boundary points meet, they coalesce into a single point that continues to execute random walk. We calculate the following quantities in the asymptotic limit of long times: 1) The average interval length (i.e., \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\;\\left\\langle l \\right\\rangle  = \\sqrt {\\pi Dt}$$\\end{document} , 2) the time-independent probability density for the reduced length \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sigma = 1/\\left\\langle l \\right\\rangle$$\\end{document} , and 3) the expected value of dl/dt for a given l, which is positive for and negative for \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$l > {l_c} = \\sqrt {2/\\pi } \\left\\langle l \\right\\rangle$$\\end{document} and negative for l < lc. The model is similar to one proposed by Louat for grain growth. Although it is not a good representation of the details of most physical processes of coarsening, it is of theoretical interest since it is one of the few cases for which analytic results can be obtained.", 
    "editor": [
      {
        "familyName": "Gurtin", 
        "givenName": "Morton E.", 
        "type": "Person"
      }, 
      {
        "familyName": "McFadden", 
        "givenName": "Geoffrey B.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-9211-8_7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-9213-2", 
        "978-1-4613-9211-8"
      ], 
      "name": "On the Evolution of Phase Boundaries", 
      "type": "Book"
    }, 
    "keywords": [
      "random walk", 
      "dimensional stochastic model", 
      "independent random walks", 
      "boundary points", 
      "most physical processes", 
      "average interval length", 
      "probability density", 
      "stochastic model", 
      "asymptotic limit", 
      "analytic results", 
      "theoretical interest", 
      "dimensional model", 
      "physical processes", 
      "adjacent intervals", 
      "walk", 
      "interval length", 
      "better representation", 
      "single point", 
      "model", 
      "diffusion coefficient", 
      "common diffusion coefficient", 
      "point", 
      "Louat", 
      "representation", 
      "coarsening", 
      "coefficient", 
      "grain growth", 
      "long time", 
      "quantity", 
      "limit", 
      "detail", 
      "intervals", 
      "density", 
      "length", 
      "dL/dt", 
      "dt", 
      "cases", 
      "results", 
      "interest", 
      "values", 
      "lines", 
      "time", 
      "process", 
      "growth"
    ], 
    "name": "A One Dimensional Stochastic Model of Coarsening", 
    "pagination": "101-105", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016403566"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-9211-8_7"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-9211-8_7", 
      "https://app.dimensions.ai/details/publication/pub.1016403566"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_421.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4613-9211-8_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-9211-8_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-9211-8_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-9211-8_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-9211-8_7'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      23 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-9211-8_7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nd147edb6142e4409a89b8ee0df4db1bc
4 schema:datePublished 1992
5 schema:datePublishedReg 1992-01-01
6 schema:description A one dimensional model of the coarsening of intervals on a line is considered in which the boundary points between adjacent intervals execute independent random walk with a common diffusion coefficient D/2; when two boundary points meet, they coalesce into a single point that continues to execute random walk. We calculate the following quantities in the asymptotic limit of long times: 1) The average interval length (i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\;\left\langle l \right\rangle = \sqrt {\pi Dt}$$\end{document} , 2) the time-independent probability density for the reduced length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma = 1/\left\langle l \right\rangle$$\end{document} , and 3) the expected value of dl/dt for a given l, which is positive for and negative for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l > {l_c} = \sqrt {2/\pi } \left\langle l \right\rangle$$\end{document} and negative for l < lc. The model is similar to one proposed by Louat for grain growth. Although it is not a good representation of the details of most physical processes of coarsening, it is of theoretical interest since it is one of the few cases for which analytic results can be obtained.
7 schema:editor N03bb0a0bd66643e78b234e00de59ca01
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nefc3cf8893dc4535998ec9753129da2c
12 schema:keywords Louat
13 adjacent intervals
14 analytic results
15 asymptotic limit
16 average interval length
17 better representation
18 boundary points
19 cases
20 coarsening
21 coefficient
22 common diffusion coefficient
23 dL/dt
24 density
25 detail
26 diffusion coefficient
27 dimensional model
28 dimensional stochastic model
29 dt
30 grain growth
31 growth
32 independent random walks
33 interest
34 interval length
35 intervals
36 length
37 limit
38 lines
39 long time
40 model
41 most physical processes
42 physical processes
43 point
44 probability density
45 process
46 quantity
47 random walk
48 representation
49 results
50 single point
51 stochastic model
52 theoretical interest
53 time
54 values
55 walk
56 schema:name A One Dimensional Stochastic Model of Coarsening
57 schema:pagination 101-105
58 schema:productId N0690eaf96f8247c38bf1727b1482a489
59 N63c640b5a2c6492195ea9ba424208475
60 schema:publisher N6f800bb976054ab9b7d0fecb1d1f1ce5
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016403566
62 https://doi.org/10.1007/978-1-4613-9211-8_7
63 schema:sdDatePublished 2022-05-20T07:47
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N81239708a025448fa8a82b95e7662a86
66 schema:url https://doi.org/10.1007/978-1-4613-9211-8_7
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N03bb0a0bd66643e78b234e00de59ca01 rdf:first N42cc9b8684d6433fa9b7bbcd08e9657a
71 rdf:rest Ndeac90528de8445d822a89574a317897
72 N0690eaf96f8247c38bf1727b1482a489 schema:name dimensions_id
73 schema:value pub.1016403566
74 rdf:type schema:PropertyValue
75 N42cc9b8684d6433fa9b7bbcd08e9657a schema:familyName Gurtin
76 schema:givenName Morton E.
77 rdf:type schema:Person
78 N4e12ff68416d441ea0121917af95a243 schema:familyName McFadden
79 schema:givenName Geoffrey B.
80 rdf:type schema:Person
81 N63c640b5a2c6492195ea9ba424208475 schema:name doi
82 schema:value 10.1007/978-1-4613-9211-8_7
83 rdf:type schema:PropertyValue
84 N6f800bb976054ab9b7d0fecb1d1f1ce5 schema:name Springer Nature
85 rdf:type schema:Organisation
86 N81239708a025448fa8a82b95e7662a86 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nd147edb6142e4409a89b8ee0df4db1bc rdf:first sg:person.013517176323.92
89 rdf:rest rdf:nil
90 Ndeac90528de8445d822a89574a317897 rdf:first N4e12ff68416d441ea0121917af95a243
91 rdf:rest rdf:nil
92 Nefc3cf8893dc4535998ec9753129da2c schema:isbn 978-1-4613-9211-8
93 978-1-4613-9213-2
94 schema:name On the Evolution of Phase Boundaries
95 rdf:type schema:Book
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
100 schema:name Statistics
101 rdf:type schema:DefinedTerm
102 sg:person.013517176323.92 schema:affiliation grid-institutes:grid.147455.6
103 schema:familyName Mullins
104 schema:givenName W. W.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517176323.92
106 rdf:type schema:Person
107 grid-institutes:grid.147455.6 schema:alternateName Department of Metallurgical Engineering and Materials Science, Carnegie Mellon University, 8309 Wean Hall, 15213, Pittsburgh, PA, USA
108 schema:name Department of Metallurgical Engineering and Materials Science, Carnegie Mellon University, 8309 Wean Hall, 15213, Pittsburgh, PA, USA
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...