Non-Perturbative Methods in Field Theory View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1978

AUTHORS

E. R. Caianiello , M. Marinaro , G. Scarpetta

ABSTRACT

We consider a Euclidean neutral scalar field theory1 described by the Lagrangian density 1 where 2 depends only on a field operator Φ(x), while connects field operators at different points. A(xx’) may contain derivatives, L[Φ(x)] in (2) contains no derivative terms, but is otherwise arbitrary except for qualitative requirements that secure the solvability of the (regularized) theory ℒ(0)(x). Eq. (3) may (but need not) be the kinetic term -½(δBμΦ)(δBμΦ) in continuous space, or any spin-coupling term in a lattice space. When ε = 0, all Green functions of the theory can be computed. More... »

PAGES

59-73

References to SciGraph publications

Book

TITLE

Particles and Fields

ISBN

978-1-4613-4002-7
978-1-4613-4000-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-4000-3_3

DOI

http://dx.doi.org/10.1007/978-1-4613-4000-3_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050308490


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Salerno", 
          "id": "https://www.grid.ac/institutes/grid.11780.3f", 
          "name": [
            "Universita di Salerno, Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caianiello", 
        "givenName": "E. R.", 
        "id": "sg:person.010067517103.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010067517103.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salerno", 
          "id": "https://www.grid.ac/institutes/grid.11780.3f", 
          "name": [
            "Universita di Salerno, Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marinaro", 
        "givenName": "M.", 
        "id": "sg:person.01027564003.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027564003.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Salerno", 
          "id": "https://www.grid.ac/institutes/grid.11780.3f", 
          "name": [
            "Universita di Salerno, Salerno, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scarpetta", 
        "givenName": "G.", 
        "id": "sg:person.014004476363.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014004476363.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02730122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001988208", 
          "https://doi.org/10.1007/bf02730122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02730122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001988208", 
          "https://doi.org/10.1007/bf02730122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02790629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009043263", 
          "https://doi.org/10.1007/bf02790629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02790629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009043263", 
          "https://doi.org/10.1007/bf02790629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02784800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011259832", 
          "https://doi.org/10.1007/bf02784800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-8914(60)90199-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044348526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-8914(60)90199-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044348526"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1978", 
    "datePublishedReg": "1978-01-01", 
    "description": "We consider a Euclidean neutral scalar field theory1 described by the Lagrangian density 1 where 2 depends only on a field operator \u03a6(x), while connects field operators at different points. A(xx\u2019) may contain derivatives, L[\u03a6(x)] in (2) contains no derivative terms, but is otherwise arbitrary except for qualitative requirements that secure the solvability of the (regularized) theory \u2112(0)(x). Eq. (3) may (but need not) be the kinetic term -\u00bd(\u03b4B\u03bc\u03a6)(\u03b4B\u03bc\u03a6) in continuous space, or any spin-coupling term in a lattice space. When \u03b5 = 0, all Green functions of the theory can be computed.", 
    "editor": [
      {
        "familyName": "Boal", 
        "givenName": "David H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kamal", 
        "givenName": "Abdul N.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-4000-3_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-4002-7", 
        "978-1-4613-4000-3"
      ], 
      "name": "Particles and Fields", 
      "type": "Book"
    }, 
    "name": "Non-Perturbative Methods in Field Theory", 
    "pagination": "59-73", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050308490"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-4000-3_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "efa7b410298f3b86495cde73eb11eb88b5d2908dfb93605fb99c3added86c994"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-4000-3_3", 
      "https://app.dimensions.ai/details/publication/pub.1050308490"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T10:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106840_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4613-4000-3_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-4000-3_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-4000-3_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-4000-3_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-4000-3_3'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-4000-3_3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc54802ac823241e3893a353297e53dd2
4 schema:citation sg:pub.10.1007/bf02730122
5 sg:pub.10.1007/bf02784800
6 sg:pub.10.1007/bf02790629
7 https://doi.org/10.1016/0031-8914(60)90199-3
8 schema:datePublished 1978
9 schema:datePublishedReg 1978-01-01
10 schema:description We consider a Euclidean neutral scalar field theory1 described by the Lagrangian density 1 where 2 depends only on a field operator Φ(x), while connects field operators at different points. A(xx’) may contain derivatives, L[Φ(x)] in (2) contains no derivative terms, but is otherwise arbitrary except for qualitative requirements that secure the solvability of the (regularized) theory ℒ(0)(x). Eq. (3) may (but need not) be the kinetic term -½(δBμΦ)(δBμΦ) in continuous space, or any spin-coupling term in a lattice space. When ε = 0, all Green functions of the theory can be computed.
11 schema:editor N0668168dc604443d8bca3a01f1734fa2
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf Nde661b450d16459385f06473353609c2
16 schema:name Non-Perturbative Methods in Field Theory
17 schema:pagination 59-73
18 schema:productId N7d5ef0f72e2543028a6b0c9280e67ee6
19 Na0f37e946b904e7085e7e059b650a954
20 Nf80510ce0c8745759eb3bfbad4f0e6ad
21 schema:publisher Nedd63d0b21f4446699a1aecdeef7b7c7
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050308490
23 https://doi.org/10.1007/978-1-4613-4000-3_3
24 schema:sdDatePublished 2019-04-16T10:11
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nb44f6342eeea4d73801edb94f06d8afa
27 schema:url https://link.springer.com/10.1007%2F978-1-4613-4000-3_3
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N0668168dc604443d8bca3a01f1734fa2 rdf:first N8bb98b74ee514f1f93ef5739101ca0e4
32 rdf:rest Ne766c3e54e814efd9c46bd3fa8bf021e
33 N12035715257346268e8329718bf3a28e schema:familyName Kamal
34 schema:givenName Abdul N.
35 rdf:type schema:Person
36 N1b31ab4fb83442eebcde1f6b3dab4a1e rdf:first sg:person.01027564003.17
37 rdf:rest N49dde8c16872482882e6382d20bdfccd
38 N49dde8c16872482882e6382d20bdfccd rdf:first sg:person.014004476363.01
39 rdf:rest rdf:nil
40 N7d5ef0f72e2543028a6b0c9280e67ee6 schema:name dimensions_id
41 schema:value pub.1050308490
42 rdf:type schema:PropertyValue
43 N8bb98b74ee514f1f93ef5739101ca0e4 schema:familyName Boal
44 schema:givenName David H.
45 rdf:type schema:Person
46 Na0f37e946b904e7085e7e059b650a954 schema:name readcube_id
47 schema:value efa7b410298f3b86495cde73eb11eb88b5d2908dfb93605fb99c3added86c994
48 rdf:type schema:PropertyValue
49 Nb44f6342eeea4d73801edb94f06d8afa schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Nc54802ac823241e3893a353297e53dd2 rdf:first sg:person.010067517103.22
52 rdf:rest N1b31ab4fb83442eebcde1f6b3dab4a1e
53 Nde661b450d16459385f06473353609c2 schema:isbn 978-1-4613-4000-3
54 978-1-4613-4002-7
55 schema:name Particles and Fields
56 rdf:type schema:Book
57 Ne766c3e54e814efd9c46bd3fa8bf021e rdf:first N12035715257346268e8329718bf3a28e
58 rdf:rest rdf:nil
59 Nedd63d0b21f4446699a1aecdeef7b7c7 schema:location Boston, MA
60 schema:name Springer US
61 rdf:type schema:Organisation
62 Nf80510ce0c8745759eb3bfbad4f0e6ad schema:name doi
63 schema:value 10.1007/978-1-4613-4000-3_3
64 rdf:type schema:PropertyValue
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:person.010067517103.22 schema:affiliation https://www.grid.ac/institutes/grid.11780.3f
72 schema:familyName Caianiello
73 schema:givenName E. R.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010067517103.22
75 rdf:type schema:Person
76 sg:person.01027564003.17 schema:affiliation https://www.grid.ac/institutes/grid.11780.3f
77 schema:familyName Marinaro
78 schema:givenName M.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027564003.17
80 rdf:type schema:Person
81 sg:person.014004476363.01 schema:affiliation https://www.grid.ac/institutes/grid.11780.3f
82 schema:familyName Scarpetta
83 schema:givenName G.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014004476363.01
85 rdf:type schema:Person
86 sg:pub.10.1007/bf02730122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001988208
87 https://doi.org/10.1007/bf02730122
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf02784800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011259832
90 https://doi.org/10.1007/bf02784800
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf02790629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009043263
93 https://doi.org/10.1007/bf02790629
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0031-8914(60)90199-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044348526
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.11780.3f schema:alternateName University of Salerno
98 schema:name Universita di Salerno, Salerno, Italy
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...