Spectroscopic Applications of Phase Conjugation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1983

AUTHORS

Murray Sargent

ABSTRACT

Phase conjugation is an important process1 that inverts a phase front in space so that it retraces the path through which it came. This can be accomplished either with “rubber mirrors” or with nonlinear optics. It has useful applications in propagation through turbulent media, through bad optics, and through optical fibers. As such, the method interests people in astronomy, military weapons, laser induced fusion, and optical communications. Alternatively, we can turn the technique around to use it to study properties of the conjugating medium. In this paper, we outline this last application, using nonlinear optical techniques. We consider the propagation of two, three, and four-wave electromagnetic fields through “single-photon” two-level media and through two-photon multilevel media. We consider cw fields at first, allowing later treatment of pulsed fields by careful application of Fourier analysis. The approach provides various ways of measuring dipole (T2) and level (T1) lifetimes, Stark shifts, and other parameters characterizing the responses of media. More... »

PAGES

477-483

Book

TITLE

Advances in Laser Spectroscopy

ISBN

978-1-4613-3717-1
978-1-4613-3715-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24

DOI

http://dx.doi.org/10.1007/978-1-4613-3715-7_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029176683


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Max-Planck-Institut f\u00fcr Quantenoptik, D-8046, Garching, Federal Republic of Germany", 
            "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sargent", 
        "givenName": "Murray", 
        "id": "sg:person.016044715770.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016044715770.57"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1983", 
    "datePublishedReg": "1983-01-01", 
    "description": "Phase conjugation is an important process1 that inverts a phase front in space so that it retraces the path through which it came. This can be accomplished either with \u201crubber mirrors\u201d or with nonlinear optics. It has useful applications in propagation through turbulent media, through bad optics, and through optical fibers. As such, the method interests people in astronomy, military weapons, laser induced fusion, and optical communications. Alternatively, we can turn the technique around to use it to study properties of the conjugating medium. In this paper, we outline this last application, using nonlinear optical techniques. We consider the propagation of two, three, and four-wave electromagnetic fields through \u201csingle-photon\u201d two-level media and through two-photon multilevel media. We consider cw fields at first, allowing later treatment of pulsed fields by careful application of Fourier analysis. The approach provides various ways of measuring dipole (T2) and level (T1) lifetimes, Stark shifts, and other parameters characterizing the responses of media.", 
    "editor": [
      {
        "familyName": "Arecchi", 
        "givenName": "F. T.", 
        "type": "Person"
      }, 
      {
        "familyName": "Strumia", 
        "givenName": "F.", 
        "type": "Person"
      }, 
      {
        "familyName": "Walther", 
        "givenName": "H.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-3715-7_24", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-3717-1", 
        "978-1-4613-3715-7"
      ], 
      "name": "Advances in Laser Spectroscopy", 
      "type": "Book"
    }, 
    "keywords": [
      "phase conjugation", 
      "nonlinear optical techniques", 
      "two-level medium", 
      "nonlinear optics", 
      "optical communication", 
      "Stark shift", 
      "spectroscopic applications", 
      "optical fiber", 
      "optical techniques", 
      "multilevel medium", 
      "turbulent medium", 
      "CW fields", 
      "phase front", 
      "electromagnetic field", 
      "optics", 
      "response of medium", 
      "field", 
      "laser", 
      "astronomy", 
      "mirror", 
      "propagation", 
      "useful applications", 
      "Fourier analysis", 
      "dipole", 
      "applications", 
      "shift", 
      "technique", 
      "medium", 
      "properties", 
      "military weapons", 
      "fibers", 
      "front", 
      "parameters", 
      "conjugation", 
      "space", 
      "path", 
      "fusion", 
      "careful application", 
      "method", 
      "process1", 
      "last application", 
      "way", 
      "communication", 
      "approach", 
      "analysis", 
      "paper", 
      "levels", 
      "response", 
      "weapons", 
      "treatment", 
      "late treatment", 
      "people"
    ], 
    "name": "Spectroscopic Applications of Phase Conjugation", 
    "pagination": "477-483", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029176683"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-3715-7_24"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-3715-7_24", 
      "https://app.dimensions.ai/details/publication/pub.1029176683"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-08-04T17:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_195.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4613-3715-7_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      22 PREDICATES      77 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-3715-7_24 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N7f12959cd7564f9cb4dfb92f92e8ca13
4 schema:datePublished 1983
5 schema:datePublishedReg 1983-01-01
6 schema:description Phase conjugation is an important process1 that inverts a phase front in space so that it retraces the path through which it came. This can be accomplished either with “rubber mirrors” or with nonlinear optics. It has useful applications in propagation through turbulent media, through bad optics, and through optical fibers. As such, the method interests people in astronomy, military weapons, laser induced fusion, and optical communications. Alternatively, we can turn the technique around to use it to study properties of the conjugating medium. In this paper, we outline this last application, using nonlinear optical techniques. We consider the propagation of two, three, and four-wave electromagnetic fields through “single-photon” two-level media and through two-photon multilevel media. We consider cw fields at first, allowing later treatment of pulsed fields by careful application of Fourier analysis. The approach provides various ways of measuring dipole (T2) and level (T1) lifetimes, Stark shifts, and other parameters characterizing the responses of media.
7 schema:editor N00160d2db4974a38b1aa5c9c3c19def6
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N65ef4ba35ca44033a0c6d5adff4eb546
11 schema:keywords CW fields
12 Fourier analysis
13 Stark shift
14 analysis
15 applications
16 approach
17 astronomy
18 careful application
19 communication
20 conjugation
21 dipole
22 electromagnetic field
23 fibers
24 field
25 front
26 fusion
27 laser
28 last application
29 late treatment
30 levels
31 medium
32 method
33 military weapons
34 mirror
35 multilevel medium
36 nonlinear optical techniques
37 nonlinear optics
38 optical communication
39 optical fiber
40 optical techniques
41 optics
42 paper
43 parameters
44 path
45 people
46 phase conjugation
47 phase front
48 process1
49 propagation
50 properties
51 response
52 response of medium
53 shift
54 space
55 spectroscopic applications
56 technique
57 treatment
58 turbulent medium
59 two-level medium
60 useful applications
61 way
62 weapons
63 schema:name Spectroscopic Applications of Phase Conjugation
64 schema:pagination 477-483
65 schema:productId N885065404e5f49b59cd3998d95fe84a5
66 Ne50c120e4ea844f9828a481b33677fa7
67 schema:publisher Ne3e4ffba99db441d8ca5a59b3d6ca071
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029176683
69 https://doi.org/10.1007/978-1-4613-3715-7_24
70 schema:sdDatePublished 2022-08-04T17:15
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Na8131d7fbeb4413283affbbbd28e109b
73 schema:url https://doi.org/10.1007/978-1-4613-3715-7_24
74 sgo:license sg:explorer/license/
75 sgo:sdDataset chapters
76 rdf:type schema:Chapter
77 N00160d2db4974a38b1aa5c9c3c19def6 rdf:first Nd387a14825454d4badb03c9b03ddd132
78 rdf:rest Nf421deb29d094c0cb6e29cf9912d349e
79 N532a725a3af14111b00fe368b281c2a6 rdf:first Nf1cc5a03e88a448496193e9dfb5356b3
80 rdf:rest rdf:nil
81 N645860613ef84ce1b0ee9fe80912c2ad schema:familyName Strumia
82 schema:givenName F.
83 rdf:type schema:Person
84 N65ef4ba35ca44033a0c6d5adff4eb546 schema:isbn 978-1-4613-3715-7
85 978-1-4613-3717-1
86 schema:name Advances in Laser Spectroscopy
87 rdf:type schema:Book
88 N7f12959cd7564f9cb4dfb92f92e8ca13 rdf:first sg:person.016044715770.57
89 rdf:rest rdf:nil
90 N885065404e5f49b59cd3998d95fe84a5 schema:name dimensions_id
91 schema:value pub.1029176683
92 rdf:type schema:PropertyValue
93 Na8131d7fbeb4413283affbbbd28e109b schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nd387a14825454d4badb03c9b03ddd132 schema:familyName Arecchi
96 schema:givenName F. T.
97 rdf:type schema:Person
98 Ne3e4ffba99db441d8ca5a59b3d6ca071 schema:name Springer Nature
99 rdf:type schema:Organisation
100 Ne50c120e4ea844f9828a481b33677fa7 schema:name doi
101 schema:value 10.1007/978-1-4613-3715-7_24
102 rdf:type schema:PropertyValue
103 Nf1cc5a03e88a448496193e9dfb5356b3 schema:familyName Walther
104 schema:givenName H.
105 rdf:type schema:Person
106 Nf421deb29d094c0cb6e29cf9912d349e rdf:first N645860613ef84ce1b0ee9fe80912c2ad
107 rdf:rest N532a725a3af14111b00fe368b281c2a6
108 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
112 schema:name Other Physical Sciences
113 rdf:type schema:DefinedTerm
114 sg:person.016044715770.57 schema:affiliation grid-institutes:grid.134563.6
115 schema:familyName Sargent
116 schema:givenName Murray
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016044715770.57
118 rdf:type schema:Person
119 grid-institutes:grid.134563.6 schema:alternateName Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA
120 schema:name Max-Planck-Institut für Quantenoptik, D-8046, Garching, Federal Republic of Germany
121 Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...