Spectroscopic Applications of Phase Conjugation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1983

AUTHORS

Murray Sargent

ABSTRACT

Phase conjugation is an important process1 that inverts a phase front in space so that it retraces the path through which it came. This can be accomplished either with “rubber mirrors” or with nonlinear optics. It has useful applications in propagation through turbulent media, through bad optics, and through optical fibers. As such, the method interests people in astronomy, military weapons, laser induced fusion, and optical communications. Alternatively, we can turn the technique around to use it to study properties of the conjugating medium. In this paper, we outline this last application, using nonlinear optical techniques. We consider the propagation of two, three, and four-wave electromagnetic fields through “single-photon” two-level media and through two-photon multilevel media. We consider cw fields at first, allowing later treatment of pulsed fields by careful application of Fourier analysis. The approach provides various ways of measuring dipole (T2) and level (T1) lifetimes, Stark shifts, and other parameters characterizing the responses of media. More... »

PAGES

477-483

Book

TITLE

Advances in Laser Spectroscopy

ISBN

978-1-4613-3717-1
978-1-4613-3715-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24

DOI

http://dx.doi.org/10.1007/978-1-4613-3715-7_24

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029176683


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Max-Planck-Institut f\u00fcr Quantenoptik, D-8046, Garching, Federal Republic of Germany", 
            "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sargent", 
        "givenName": "Murray", 
        "id": "sg:person.016044715770.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016044715770.57"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1983", 
    "datePublishedReg": "1983-01-01", 
    "description": "Phase conjugation is an important process1 that inverts a phase front in space so that it retraces the path through which it came. This can be accomplished either with \u201crubber mirrors\u201d or with nonlinear optics. It has useful applications in propagation through turbulent media, through bad optics, and through optical fibers. As such, the method interests people in astronomy, military weapons, laser induced fusion, and optical communications. Alternatively, we can turn the technique around to use it to study properties of the conjugating medium. In this paper, we outline this last application, using nonlinear optical techniques. We consider the propagation of two, three, and four-wave electromagnetic fields through \u201csingle-photon\u201d two-level media and through two-photon multilevel media. We consider cw fields at first, allowing later treatment of pulsed fields by careful application of Fourier analysis. The approach provides various ways of measuring dipole (T2) and level (T1) lifetimes, Stark shifts, and other parameters characterizing the responses of media.", 
    "editor": [
      {
        "familyName": "Arecchi", 
        "givenName": "F. T.", 
        "type": "Person"
      }, 
      {
        "familyName": "Strumia", 
        "givenName": "F.", 
        "type": "Person"
      }, 
      {
        "familyName": "Walther", 
        "givenName": "H.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-3715-7_24", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-3717-1", 
        "978-1-4613-3715-7"
      ], 
      "name": "Advances in Laser Spectroscopy", 
      "type": "Book"
    }, 
    "keywords": [
      "phase conjugation", 
      "nonlinear optical techniques", 
      "two-level medium", 
      "nonlinear optics", 
      "optical communication", 
      "Stark shift", 
      "spectroscopic applications", 
      "optical fiber", 
      "optical techniques", 
      "multilevel medium", 
      "turbulent medium", 
      "CW fields", 
      "phase front", 
      "electromagnetic field", 
      "optics", 
      "response of medium", 
      "field", 
      "laser", 
      "astronomy", 
      "mirror", 
      "propagation", 
      "useful applications", 
      "dipole", 
      "Fourier analysis", 
      "applications", 
      "shift", 
      "medium", 
      "technique", 
      "properties", 
      "fibers", 
      "military weapons", 
      "front", 
      "parameters", 
      "conjugation", 
      "space", 
      "path", 
      "process1", 
      "careful application", 
      "fusion", 
      "method", 
      "last application", 
      "way", 
      "communication", 
      "approach", 
      "analysis", 
      "paper", 
      "levels", 
      "response", 
      "weapons", 
      "treatment", 
      "late treatment", 
      "people"
    ], 
    "name": "Spectroscopic Applications of Phase Conjugation", 
    "pagination": "477-483", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029176683"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-3715-7_24"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-3715-7_24", 
      "https://app.dimensions.ai/details/publication/pub.1029176683"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_30.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4613-3715-7_24"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      23 PREDICATES      78 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-3715-7_24 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N9ec4436b9030490dab651526e72572f1
4 schema:datePublished 1983
5 schema:datePublishedReg 1983-01-01
6 schema:description Phase conjugation is an important process1 that inverts a phase front in space so that it retraces the path through which it came. This can be accomplished either with “rubber mirrors” or with nonlinear optics. It has useful applications in propagation through turbulent media, through bad optics, and through optical fibers. As such, the method interests people in astronomy, military weapons, laser induced fusion, and optical communications. Alternatively, we can turn the technique around to use it to study properties of the conjugating medium. In this paper, we outline this last application, using nonlinear optical techniques. We consider the propagation of two, three, and four-wave electromagnetic fields through “single-photon” two-level media and through two-photon multilevel media. We consider cw fields at first, allowing later treatment of pulsed fields by careful application of Fourier analysis. The approach provides various ways of measuring dipole (T2) and level (T1) lifetimes, Stark shifts, and other parameters characterizing the responses of media.
7 schema:editor Nae7da5c4db8042adb0e66ece087de505
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N228da6234add48e2ac49e30f7ef54c18
12 schema:keywords CW fields
13 Fourier analysis
14 Stark shift
15 analysis
16 applications
17 approach
18 astronomy
19 careful application
20 communication
21 conjugation
22 dipole
23 electromagnetic field
24 fibers
25 field
26 front
27 fusion
28 laser
29 last application
30 late treatment
31 levels
32 medium
33 method
34 military weapons
35 mirror
36 multilevel medium
37 nonlinear optical techniques
38 nonlinear optics
39 optical communication
40 optical fiber
41 optical techniques
42 optics
43 paper
44 parameters
45 path
46 people
47 phase conjugation
48 phase front
49 process1
50 propagation
51 properties
52 response
53 response of medium
54 shift
55 space
56 spectroscopic applications
57 technique
58 treatment
59 turbulent medium
60 two-level medium
61 useful applications
62 way
63 weapons
64 schema:name Spectroscopic Applications of Phase Conjugation
65 schema:pagination 477-483
66 schema:productId N11e3937be09f4999935eaac3433ea942
67 N80d4a3f1636b4629853f58e74fa9f047
68 schema:publisher N6d724768c9b04b6487c9d2a0f1dff035
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029176683
70 https://doi.org/10.1007/978-1-4613-3715-7_24
71 schema:sdDatePublished 2022-06-01T22:32
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Ne62510f4bf4b4cec91bf1c3dd9e434ad
74 schema:url https://doi.org/10.1007/978-1-4613-3715-7_24
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N11e3937be09f4999935eaac3433ea942 schema:name doi
79 schema:value 10.1007/978-1-4613-3715-7_24
80 rdf:type schema:PropertyValue
81 N228da6234add48e2ac49e30f7ef54c18 schema:isbn 978-1-4613-3715-7
82 978-1-4613-3717-1
83 schema:name Advances in Laser Spectroscopy
84 rdf:type schema:Book
85 N6d724768c9b04b6487c9d2a0f1dff035 schema:name Springer Nature
86 rdf:type schema:Organisation
87 N80d4a3f1636b4629853f58e74fa9f047 schema:name dimensions_id
88 schema:value pub.1029176683
89 rdf:type schema:PropertyValue
90 N8fe14bae822142f4ab20d5d55f0cec7a schema:familyName Arecchi
91 schema:givenName F. T.
92 rdf:type schema:Person
93 N9ec4436b9030490dab651526e72572f1 rdf:first sg:person.016044715770.57
94 rdf:rest rdf:nil
95 Nae7da5c4db8042adb0e66ece087de505 rdf:first N8fe14bae822142f4ab20d5d55f0cec7a
96 rdf:rest Nb8b4de07e23e4e13a48ad7da004f509d
97 Nb8b4de07e23e4e13a48ad7da004f509d rdf:first Nf44d74d7467541eda25784d7df7f5997
98 rdf:rest Ne5a0cb78c837449d8ea32af406cad21d
99 Ne5a0cb78c837449d8ea32af406cad21d rdf:first Nf49295b002bd4bd18f93bdf5fbf5ba66
100 rdf:rest rdf:nil
101 Ne62510f4bf4b4cec91bf1c3dd9e434ad schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 Nf44d74d7467541eda25784d7df7f5997 schema:familyName Strumia
104 schema:givenName F.
105 rdf:type schema:Person
106 Nf49295b002bd4bd18f93bdf5fbf5ba66 schema:familyName Walther
107 schema:givenName H.
108 rdf:type schema:Person
109 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
113 schema:name Other Physical Sciences
114 rdf:type schema:DefinedTerm
115 sg:person.016044715770.57 schema:affiliation grid-institutes:grid.134563.6
116 schema:familyName Sargent
117 schema:givenName Murray
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016044715770.57
119 rdf:type schema:Person
120 grid-institutes:grid.134563.6 schema:alternateName Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA
121 schema:name Max-Planck-Institut für Quantenoptik, D-8046, Garching, Federal Republic of Germany
122 Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...