1983
AUTHORS ABSTRACTPhase conjugation is an important process1 that inverts a phase front in space so that it retraces the path through which it came. This can be accomplished either with “rubber mirrors” or with nonlinear optics. It has useful applications in propagation through turbulent media, through bad optics, and through optical fibers. As such, the method interests people in astronomy, military weapons, laser induced fusion, and optical communications. Alternatively, we can turn the technique around to use it to study properties of the conjugating medium. In this paper, we outline this last application, using nonlinear optical techniques. We consider the propagation of two, three, and four-wave electromagnetic fields through “single-photon” two-level media and through two-photon multilevel media. We consider cw fields at first, allowing later treatment of pulsed fields by careful application of Fourier analysis. The approach provides various ways of measuring dipole (T2) and level (T1) lifetimes, Stark shifts, and other parameters characterizing the responses of media. More... »
PAGES477-483
Advances in Laser Spectroscopy
ISBN
978-1-4613-3717-1
978-1-4613-3715-7
http://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24
DOIhttp://dx.doi.org/10.1007/978-1-4613-3715-7_24
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1029176683
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA",
"id": "http://www.grid.ac/institutes/grid.134563.6",
"name": [
"Max-Planck-Institut f\u00fcr Quantenoptik, D-8046, Garching, Federal Republic of Germany",
"Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
],
"type": "Organization"
},
"familyName": "Sargent",
"givenName": "Murray",
"id": "sg:person.016044715770.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016044715770.57"
],
"type": "Person"
}
],
"datePublished": "1983",
"datePublishedReg": "1983-01-01",
"description": "Phase conjugation is an important process1 that inverts a phase front in space so that it retraces the path through which it came. This can be accomplished either with \u201crubber mirrors\u201d or with nonlinear optics. It has useful applications in propagation through turbulent media, through bad optics, and through optical fibers. As such, the method interests people in astronomy, military weapons, laser induced fusion, and optical communications. Alternatively, we can turn the technique around to use it to study properties of the conjugating medium. In this paper, we outline this last application, using nonlinear optical techniques. We consider the propagation of two, three, and four-wave electromagnetic fields through \u201csingle-photon\u201d two-level media and through two-photon multilevel media. We consider cw fields at first, allowing later treatment of pulsed fields by careful application of Fourier analysis. The approach provides various ways of measuring dipole (T2) and level (T1) lifetimes, Stark shifts, and other parameters characterizing the responses of media.",
"editor": [
{
"familyName": "Arecchi",
"givenName": "F. T.",
"type": "Person"
},
{
"familyName": "Strumia",
"givenName": "F.",
"type": "Person"
},
{
"familyName": "Walther",
"givenName": "H.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-4613-3715-7_24",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-1-4613-3717-1",
"978-1-4613-3715-7"
],
"name": "Advances in Laser Spectroscopy",
"type": "Book"
},
"keywords": [
"phase conjugation",
"nonlinear optical techniques",
"two-level medium",
"nonlinear optics",
"optical communication",
"Stark shift",
"spectroscopic applications",
"optical fiber",
"optical techniques",
"multilevel medium",
"turbulent medium",
"CW fields",
"phase front",
"electromagnetic field",
"optics",
"response of medium",
"field",
"laser",
"astronomy",
"mirror",
"propagation",
"useful applications",
"dipole",
"Fourier analysis",
"applications",
"shift",
"medium",
"technique",
"properties",
"fibers",
"military weapons",
"front",
"parameters",
"conjugation",
"space",
"path",
"process1",
"careful application",
"fusion",
"method",
"last application",
"way",
"communication",
"approach",
"analysis",
"paper",
"levels",
"response",
"weapons",
"treatment",
"late treatment",
"people"
],
"name": "Spectroscopic Applications of Phase Conjugation",
"pagination": "477-483",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1029176683"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-4613-3715-7_24"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-4613-3715-7_24",
"https://app.dimensions.ai/details/publication/pub.1029176683"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:32",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_30.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-1-4613-3715-7_24"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3715-7_24'
This table displays all metadata directly associated to this object as RDF triples.
123 TRIPLES
23 PREDICATES
78 URIs
71 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-1-4613-3715-7_24 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | N9ec4436b9030490dab651526e72572f1 |
4 | ″ | schema:datePublished | 1983 |
5 | ″ | schema:datePublishedReg | 1983-01-01 |
6 | ″ | schema:description | Phase conjugation is an important process1 that inverts a phase front in space so that it retraces the path through which it came. This can be accomplished either with “rubber mirrors” or with nonlinear optics. It has useful applications in propagation through turbulent media, through bad optics, and through optical fibers. As such, the method interests people in astronomy, military weapons, laser induced fusion, and optical communications. Alternatively, we can turn the technique around to use it to study properties of the conjugating medium. In this paper, we outline this last application, using nonlinear optical techniques. We consider the propagation of two, three, and four-wave electromagnetic fields through “single-photon” two-level media and through two-photon multilevel media. We consider cw fields at first, allowing later treatment of pulsed fields by careful application of Fourier analysis. The approach provides various ways of measuring dipole (T2) and level (T1) lifetimes, Stark shifts, and other parameters characterizing the responses of media. |
7 | ″ | schema:editor | Nae7da5c4db8042adb0e66ece087de505 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N228da6234add48e2ac49e30f7ef54c18 |
12 | ″ | schema:keywords | CW fields |
13 | ″ | ″ | Fourier analysis |
14 | ″ | ″ | Stark shift |
15 | ″ | ″ | analysis |
16 | ″ | ″ | applications |
17 | ″ | ″ | approach |
18 | ″ | ″ | astronomy |
19 | ″ | ″ | careful application |
20 | ″ | ″ | communication |
21 | ″ | ″ | conjugation |
22 | ″ | ″ | dipole |
23 | ″ | ″ | electromagnetic field |
24 | ″ | ″ | fibers |
25 | ″ | ″ | field |
26 | ″ | ″ | front |
27 | ″ | ″ | fusion |
28 | ″ | ″ | laser |
29 | ″ | ″ | last application |
30 | ″ | ″ | late treatment |
31 | ″ | ″ | levels |
32 | ″ | ″ | medium |
33 | ″ | ″ | method |
34 | ″ | ″ | military weapons |
35 | ″ | ″ | mirror |
36 | ″ | ″ | multilevel medium |
37 | ″ | ″ | nonlinear optical techniques |
38 | ″ | ″ | nonlinear optics |
39 | ″ | ″ | optical communication |
40 | ″ | ″ | optical fiber |
41 | ″ | ″ | optical techniques |
42 | ″ | ″ | optics |
43 | ″ | ″ | paper |
44 | ″ | ″ | parameters |
45 | ″ | ″ | path |
46 | ″ | ″ | people |
47 | ″ | ″ | phase conjugation |
48 | ″ | ″ | phase front |
49 | ″ | ″ | process1 |
50 | ″ | ″ | propagation |
51 | ″ | ″ | properties |
52 | ″ | ″ | response |
53 | ″ | ″ | response of medium |
54 | ″ | ″ | shift |
55 | ″ | ″ | space |
56 | ″ | ″ | spectroscopic applications |
57 | ″ | ″ | technique |
58 | ″ | ″ | treatment |
59 | ″ | ″ | turbulent medium |
60 | ″ | ″ | two-level medium |
61 | ″ | ″ | useful applications |
62 | ″ | ″ | way |
63 | ″ | ″ | weapons |
64 | ″ | schema:name | Spectroscopic Applications of Phase Conjugation |
65 | ″ | schema:pagination | 477-483 |
66 | ″ | schema:productId | N11e3937be09f4999935eaac3433ea942 |
67 | ″ | ″ | N80d4a3f1636b4629853f58e74fa9f047 |
68 | ″ | schema:publisher | N6d724768c9b04b6487c9d2a0f1dff035 |
69 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029176683 |
70 | ″ | ″ | https://doi.org/10.1007/978-1-4613-3715-7_24 |
71 | ″ | schema:sdDatePublished | 2022-06-01T22:32 |
72 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
73 | ″ | schema:sdPublisher | Ne62510f4bf4b4cec91bf1c3dd9e434ad |
74 | ″ | schema:url | https://doi.org/10.1007/978-1-4613-3715-7_24 |
75 | ″ | sgo:license | sg:explorer/license/ |
76 | ″ | sgo:sdDataset | chapters |
77 | ″ | rdf:type | schema:Chapter |
78 | N11e3937be09f4999935eaac3433ea942 | schema:name | doi |
79 | ″ | schema:value | 10.1007/978-1-4613-3715-7_24 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | N228da6234add48e2ac49e30f7ef54c18 | schema:isbn | 978-1-4613-3715-7 |
82 | ″ | ″ | 978-1-4613-3717-1 |
83 | ″ | schema:name | Advances in Laser Spectroscopy |
84 | ″ | rdf:type | schema:Book |
85 | N6d724768c9b04b6487c9d2a0f1dff035 | schema:name | Springer Nature |
86 | ″ | rdf:type | schema:Organisation |
87 | N80d4a3f1636b4629853f58e74fa9f047 | schema:name | dimensions_id |
88 | ″ | schema:value | pub.1029176683 |
89 | ″ | rdf:type | schema:PropertyValue |
90 | N8fe14bae822142f4ab20d5d55f0cec7a | schema:familyName | Arecchi |
91 | ″ | schema:givenName | F. T. |
92 | ″ | rdf:type | schema:Person |
93 | N9ec4436b9030490dab651526e72572f1 | rdf:first | sg:person.016044715770.57 |
94 | ″ | rdf:rest | rdf:nil |
95 | Nae7da5c4db8042adb0e66ece087de505 | rdf:first | N8fe14bae822142f4ab20d5d55f0cec7a |
96 | ″ | rdf:rest | Nb8b4de07e23e4e13a48ad7da004f509d |
97 | Nb8b4de07e23e4e13a48ad7da004f509d | rdf:first | Nf44d74d7467541eda25784d7df7f5997 |
98 | ″ | rdf:rest | Ne5a0cb78c837449d8ea32af406cad21d |
99 | Ne5a0cb78c837449d8ea32af406cad21d | rdf:first | Nf49295b002bd4bd18f93bdf5fbf5ba66 |
100 | ″ | rdf:rest | rdf:nil |
101 | Ne62510f4bf4b4cec91bf1c3dd9e434ad | schema:name | Springer Nature - SN SciGraph project |
102 | ″ | rdf:type | schema:Organization |
103 | Nf44d74d7467541eda25784d7df7f5997 | schema:familyName | Strumia |
104 | ″ | schema:givenName | F. |
105 | ″ | rdf:type | schema:Person |
106 | Nf49295b002bd4bd18f93bdf5fbf5ba66 | schema:familyName | Walther |
107 | ″ | schema:givenName | H. |
108 | ″ | rdf:type | schema:Person |
109 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Physical Sciences |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Other Physical Sciences |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | sg:person.016044715770.57 | schema:affiliation | grid-institutes:grid.134563.6 |
116 | ″ | schema:familyName | Sargent |
117 | ″ | schema:givenName | Murray |
118 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016044715770.57 |
119 | ″ | rdf:type | schema:Person |
120 | grid-institutes:grid.134563.6 | schema:alternateName | Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA |
121 | ″ | schema:name | Max-Planck-Institut für Quantenoptik, D-8046, Garching, Federal Republic of Germany |
122 | ″ | ″ | Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA |
123 | ″ | rdf:type | schema:Organization |