Derivation of Sea Ice Concentration, Age and Surface Temperature from Multispectral Microwave Radiances Obtained with the Nimbus-7 Scanning Multichannel Microwave ... View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1981

AUTHORS

P. Gloersen , D. Cavalieri , W. J. Campbell

ABSTRACT

An algorithm has been developed which utilizes the multi- spectral data available from the Nimbus-7 Scanning Multichannel Microwave Radiometer (Nimbus-7 SMMR) to infer sea ice concentration (C), multiyear ice fraction (F), and ice surface temperature. The method is expected to provide an improved capability for inferring C as contrasted with the Nimbus-5 ESMR algorithm which utilized only one channel of radiometric data to predict C to about 10–15%. With Nimbus-7 SMMR, the predicted capability is 3–5% for C. A sensitivity analysis has been completed for all of the derived sea ice parameters using computed noise amplification factors and the measured noise figures from the Nimbus-7 SMMR channels. More... »

PAGES

823-829

Book

TITLE

Oceanography from Space

ISBN

978-1-4613-3317-3
978-1-4613-3315-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-3315-9_95

DOI

http://dx.doi.org/10.1007/978-1-4613-3315-9_95

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008608831


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Aeronautics and Space Administration", 
          "id": "https://www.grid.ac/institutes/grid.238252.c", 
          "name": [
            "Laboratory for Atmospheric Sciences (GLAS), Goddard Space Flight Center National Aeronautics and Space Administration, Greenbelt, MD\u00a020771, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gloersen", 
        "givenName": "P.", 
        "id": "sg:person.010412203172.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412203172.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Aeronautics and Space Administration", 
          "id": "https://www.grid.ac/institutes/grid.238252.c", 
          "name": [
            "Laboratory for Atmospheric Sciences (GLAS), Goddard Space Flight Center National Aeronautics and Space Administration, Greenbelt, MD\u00a020771, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cavalieri", 
        "givenName": "D.", 
        "id": "sg:person.010613340357.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010613340357.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Puget Sound", 
          "id": "https://www.grid.ac/institutes/grid.267047.0", 
          "name": [
            "Ice Dynamics Project, 113 Thompson Hall University of Puget Sound, Tacoma, WA\u00a098416, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Campbell", 
        "givenName": "W. J.", 
        "id": "sg:person.016647346475.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647346475.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0477(1974)055<1442:mmotpi>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007382134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0032247400000930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010482685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0032247400000930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010482685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00913881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037678629", 
          "https://doi.org/10.1007/bf00913881"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981", 
    "datePublishedReg": "1981-01-01", 
    "description": "An algorithm has been developed which utilizes the multi- spectral data available from the Nimbus-7 Scanning Multichannel Microwave Radiometer (Nimbus-7 SMMR) to infer sea ice concentration (C), multiyear ice fraction (F), and ice surface temperature. The method is expected to provide an improved capability for inferring C as contrasted with the Nimbus-5 ESMR algorithm which utilized only one channel of radiometric data to predict C to about 10\u201315%. With Nimbus-7 SMMR, the predicted capability is 3\u20135% for C. A sensitivity analysis has been completed for all of the derived sea ice parameters using computed noise amplification factors and the measured noise figures from the Nimbus-7 SMMR channels.", 
    "editor": [
      {
        "familyName": "Gower", 
        "givenName": "J. F. R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-3315-9_95", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-3317-3", 
        "978-1-4613-3315-9"
      ], 
      "name": "Oceanography from Space", 
      "type": "Book"
    }, 
    "name": "Derivation of Sea Ice Concentration, Age and Surface Temperature from Multispectral Microwave Radiances Obtained with the Nimbus-7 Scanning Multichannel Microwave Radiometer", 
    "pagination": "823-829", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-3315-9_95"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2903d8366d9e26febd5f8dd396446c624edad031a2b61a082ee5c82b662c28f1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008608831"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-3315-9_95", 
      "https://app.dimensions.ai/details/publication/pub.1008608831"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T23:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000248.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4613-3315-9_95"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3315-9_95'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3315-9_95'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3315-9_95'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3315-9_95'


 

This table displays all metadata directly associated to this object as RDF triples.

92 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-3315-9_95 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N0a1b6247d6bf460ab7137b8068689767
4 schema:citation sg:pub.10.1007/bf00913881
5 https://doi.org/10.1017/s0032247400000930
6 https://doi.org/10.1175/1520-0477(1974)055<1442:mmotpi>2.0.co;2
7 schema:datePublished 1981
8 schema:datePublishedReg 1981-01-01
9 schema:description An algorithm has been developed which utilizes the multi- spectral data available from the Nimbus-7 Scanning Multichannel Microwave Radiometer (Nimbus-7 SMMR) to infer sea ice concentration (C), multiyear ice fraction (F), and ice surface temperature. The method is expected to provide an improved capability for inferring C as contrasted with the Nimbus-5 ESMR algorithm which utilized only one channel of radiometric data to predict C to about 10–15%. With Nimbus-7 SMMR, the predicted capability is 3–5% for C. A sensitivity analysis has been completed for all of the derived sea ice parameters using computed noise amplification factors and the measured noise figures from the Nimbus-7 SMMR channels.
10 schema:editor N54502ed96ed745c1a7fe66de07136102
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N48d21e613f0048d7afb0adcdbb312a49
15 schema:name Derivation of Sea Ice Concentration, Age and Surface Temperature from Multispectral Microwave Radiances Obtained with the Nimbus-7 Scanning Multichannel Microwave Radiometer
16 schema:pagination 823-829
17 schema:productId N43f71552f20549e395c9123188024f34
18 Ne36798a4a25746c6af6bfd4869cb6f4e
19 Ne67c396fa4104e65b54be56c213e6c05
20 schema:publisher Na16a8bb46edb418ebdb9afa46bcc5f21
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008608831
22 https://doi.org/10.1007/978-1-4613-3315-9_95
23 schema:sdDatePublished 2019-04-15T23:50
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N1fd850168b0f4dbaa9f04d9f9def9a0f
26 schema:url http://link.springer.com/10.1007/978-1-4613-3315-9_95
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N0a1b6247d6bf460ab7137b8068689767 rdf:first sg:person.010412203172.67
31 rdf:rest N19b36c81d54a4343a9980721ba075569
32 N19b36c81d54a4343a9980721ba075569 rdf:first sg:person.010613340357.54
33 rdf:rest N93fd124cfde1459e893f9b273b419234
34 N1fd850168b0f4dbaa9f04d9f9def9a0f schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N43f71552f20549e395c9123188024f34 schema:name dimensions_id
37 schema:value pub.1008608831
38 rdf:type schema:PropertyValue
39 N48d21e613f0048d7afb0adcdbb312a49 schema:isbn 978-1-4613-3315-9
40 978-1-4613-3317-3
41 schema:name Oceanography from Space
42 rdf:type schema:Book
43 N54502ed96ed745c1a7fe66de07136102 rdf:first N7b7e9ac949b142069de8c5c64d426ba5
44 rdf:rest rdf:nil
45 N7b7e9ac949b142069de8c5c64d426ba5 schema:familyName Gower
46 schema:givenName J. F. R.
47 rdf:type schema:Person
48 N93fd124cfde1459e893f9b273b419234 rdf:first sg:person.016647346475.15
49 rdf:rest rdf:nil
50 Na16a8bb46edb418ebdb9afa46bcc5f21 schema:location Boston, MA
51 schema:name Springer US
52 rdf:type schema:Organisation
53 Ne36798a4a25746c6af6bfd4869cb6f4e schema:name doi
54 schema:value 10.1007/978-1-4613-3315-9_95
55 rdf:type schema:PropertyValue
56 Ne67c396fa4104e65b54be56c213e6c05 schema:name readcube_id
57 schema:value 2903d8366d9e26febd5f8dd396446c624edad031a2b61a082ee5c82b662c28f1
58 rdf:type schema:PropertyValue
59 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
60 schema:name Earth Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
63 schema:name Physical Geography and Environmental Geoscience
64 rdf:type schema:DefinedTerm
65 sg:person.010412203172.67 schema:affiliation https://www.grid.ac/institutes/grid.238252.c
66 schema:familyName Gloersen
67 schema:givenName P.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412203172.67
69 rdf:type schema:Person
70 sg:person.010613340357.54 schema:affiliation https://www.grid.ac/institutes/grid.238252.c
71 schema:familyName Cavalieri
72 schema:givenName D.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010613340357.54
74 rdf:type schema:Person
75 sg:person.016647346475.15 schema:affiliation https://www.grid.ac/institutes/grid.267047.0
76 schema:familyName Campbell
77 schema:givenName W. J.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647346475.15
79 rdf:type schema:Person
80 sg:pub.10.1007/bf00913881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037678629
81 https://doi.org/10.1007/bf00913881
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1017/s0032247400000930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010482685
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1175/1520-0477(1974)055<1442:mmotpi>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007382134
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.238252.c schema:alternateName National Aeronautics and Space Administration
88 schema:name Laboratory for Atmospheric Sciences (GLAS), Goddard Space Flight Center National Aeronautics and Space Administration, Greenbelt, MD 20771, USA
89 rdf:type schema:Organization
90 https://www.grid.ac/institutes/grid.267047.0 schema:alternateName University of Puget Sound
91 schema:name Ice Dynamics Project, 113 Thompson Hall University of Puget Sound, Tacoma, WA 98416, USA
92 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...