Physico-Chemical and Restriction Endonuclease Analysis of Mitochondrial DNA from Higher Plants View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1980

AUTHORS

Francis Quetier , Fernand Vedel

ABSTRACT

The presence of DNA fibrils in plant mitochondria has been reported at the beginning of the 60s; the isolation of mt DNA molecules from higher plants has been achieved some years later and most of the physico-chemical characteristics are now well established (Wells and Birnstiel 1969, Kolodner and Tewari 1972, Vedel and Quétier 1974). The mt-DNA represent nearly 1% of the total cell DNA and must be isolated from DNase-treated intact organelles. The mitochondria of all higher plants so far studied have been shown to contain DNA quite distinguishable from both nuclear and chloroplastic DNAs. The G+C content of this mt-DNA, as determined by CsCl buoyant density, is remarkably constant at 1.706 g.ml-1 whatever the plant genus and the level of evolution. This constancy is rather puzzling when compared to the buoyant densities of animal mt DNAs which range from 1.686 g.ml-1 to 1.711 g.ml-1. The study of both thermal denaturation profiles and analytical CsCl banding patterns achieved at different molecular weights do not reveal any heterogeneity (Vedel and Quétier 1974) while interactions with synthetic homopolyribonucleotides suggest that d-A and d-C rich clusters are present. The only divergent parameters to be reported till 1974 were the length of DNA molecules examined under electron microscope and the Cot value which respectively ranged from 10 to 30 µm and from 74.106 d to 140.106 d. The dispersion within each of these parameters and the discrepancy between them remained unclear till recently, although they indicated that the mt DNA from higher plants is about 6 times larger than the animal mt DNA. More... »

PAGES

401-406

Book

TITLE

Genome Organization and Expression in Plants

ISBN

978-1-4613-3053-0
978-1-4613-3051-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-3051-6_34

DOI

http://dx.doi.org/10.1007/978-1-4613-3051-6_34

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024103451


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0607", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Plant Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Laboratoire de Biologie Mol\u00e9culaire V\u00e9g\u00e9tale associ\u00e9 au CNRS (LA 40), France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quetier", 
        "givenName": "Francis", 
        "id": "sg:person.060662220.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.060662220.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de Biologie Mol\u00e9culaire V\u00e9g\u00e9tale associ\u00e9 au CNRS (LA 40), France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vedel", 
        "givenName": "Fernand", 
        "id": "sg:person.01230546500.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230546500.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0022-5320(70)80006-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000339205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(74)90059-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003439607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(74)90059-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003439607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.61.3.460", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004481261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.61.1.245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004863940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/268365a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030631345", 
          "https://doi.org/10.1038/268365a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-291x(73)91132-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041375338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4211(78)90236-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042629024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-4211(78)90236-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042629024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.69.7.1830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044540071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/256708a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046220219", 
          "https://doi.org/10.1038/256708a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/256708a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046220219", 
          "https://doi.org/10.1038/256708a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj1120777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051046533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj1120777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051046533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.193.4248.158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062513826"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1980", 
    "datePublishedReg": "1980-01-01", 
    "description": "The presence of DNA fibrils in plant mitochondria has been reported at the beginning of the 60s; the isolation of mt DNA molecules from higher plants has been achieved some years later and most of the physico-chemical characteristics are now well established (Wells and Birnstiel 1969, Kolodner and Tewari 1972, Vedel and Qu\u00e9tier 1974). The mt-DNA represent nearly 1% of the total cell DNA and must be isolated from DNase-treated intact organelles. The mitochondria of all higher plants so far studied have been shown to contain DNA quite distinguishable from both nuclear and chloroplastic DNAs. The G+C content of this mt-DNA, as determined by CsCl buoyant density, is remarkably constant at 1.706 g.ml-1 whatever the plant genus and the level of evolution. This constancy is rather puzzling when compared to the buoyant densities of animal mt DNAs which range from 1.686 g.ml-1 to 1.711 g.ml-1. The study of both thermal denaturation profiles and analytical CsCl banding patterns achieved at different molecular weights do not reveal any heterogeneity (Vedel and Qu\u00e9tier 1974) while interactions with synthetic homopolyribonucleotides suggest that d-A and d-C rich clusters are present. The only divergent parameters to be reported till 1974 were the length of DNA molecules examined under electron microscope and the Cot value which respectively ranged from 10 to 30 \u00b5m and from 74.106 d to 140.106 d. The dispersion within each of these parameters and the discrepancy between them remained unclear till recently, although they indicated that the mt DNA from higher plants is about 6 times larger than the animal mt DNA.", 
    "editor": [
      {
        "familyName": "Leaver", 
        "givenName": "C. J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-3051-6_34", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-3053-0", 
        "978-1-4613-3051-6"
      ], 
      "name": "Genome Organization and Expression in Plants", 
      "type": "Book"
    }, 
    "name": "Physico-Chemical and Restriction Endonuclease Analysis of Mitochondrial DNA from Higher Plants", 
    "pagination": "401-406", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-3051-6_34"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "72d57f304fb7e38e0c5e6e1527385c9d54cf2e4858d4e178b2e0cd9d6187b301"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024103451"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-3051-6_34", 
      "https://app.dimensions.ai/details/publication/pub.1024103451"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000258.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4613-3051-6_34"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3051-6_34'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3051-6_34'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3051-6_34'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-3051-6_34'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      23 PREDICATES      38 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-3051-6_34 schema:about anzsrc-for:06
2 anzsrc-for:0607
3 schema:author N66b5377bb2ce4919adc6364f60d0a2c6
4 schema:citation sg:pub.10.1038/256708a0
5 sg:pub.10.1038/268365a0
6 https://doi.org/10.1016/0005-2787(74)90059-8
7 https://doi.org/10.1016/0006-291x(73)91132-7
8 https://doi.org/10.1016/0304-4211(78)90236-5
9 https://doi.org/10.1016/s0022-5320(70)80006-5
10 https://doi.org/10.1042/bj1120777
11 https://doi.org/10.1073/pnas.61.1.245
12 https://doi.org/10.1073/pnas.69.7.1830
13 https://doi.org/10.1104/pp.61.3.460
14 https://doi.org/10.1126/science.193.4248.158
15 schema:datePublished 1980
16 schema:datePublishedReg 1980-01-01
17 schema:description The presence of DNA fibrils in plant mitochondria has been reported at the beginning of the 60s; the isolation of mt DNA molecules from higher plants has been achieved some years later and most of the physico-chemical characteristics are now well established (Wells and Birnstiel 1969, Kolodner and Tewari 1972, Vedel and Quétier 1974). The mt-DNA represent nearly 1% of the total cell DNA and must be isolated from DNase-treated intact organelles. The mitochondria of all higher plants so far studied have been shown to contain DNA quite distinguishable from both nuclear and chloroplastic DNAs. The G+C content of this mt-DNA, as determined by CsCl buoyant density, is remarkably constant at 1.706 g.ml-1 whatever the plant genus and the level of evolution. This constancy is rather puzzling when compared to the buoyant densities of animal mt DNAs which range from 1.686 g.ml-1 to 1.711 g.ml-1. The study of both thermal denaturation profiles and analytical CsCl banding patterns achieved at different molecular weights do not reveal any heterogeneity (Vedel and Quétier 1974) while interactions with synthetic homopolyribonucleotides suggest that d-A and d-C rich clusters are present. The only divergent parameters to be reported till 1974 were the length of DNA molecules examined under electron microscope and the Cot value which respectively ranged from 10 to 30 µm and from 74.106 d to 140.106 d. The dispersion within each of these parameters and the discrepancy between them remained unclear till recently, although they indicated that the mt DNA from higher plants is about 6 times larger than the animal mt DNA.
18 schema:editor Nb87d7dda6b7841758495f21f46dbff98
19 schema:genre chapter
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N16e47b14a8bc455292bf1ddc0b08b7e0
23 schema:name Physico-Chemical and Restriction Endonuclease Analysis of Mitochondrial DNA from Higher Plants
24 schema:pagination 401-406
25 schema:productId N195b40b5b44d44fcba3ea08db2388519
26 N7a3806d2c30d46a0b163cb23d97e78d5
27 Ne4ab464f29a5453c8584541632542a73
28 schema:publisher N2eeb54bea87d40cfa7d81cd0831be411
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024103451
30 https://doi.org/10.1007/978-1-4613-3051-6_34
31 schema:sdDatePublished 2019-04-15T21:58
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N7b5f1889a3774ef7ae6de0e5dabd25e1
34 schema:url http://link.springer.com/10.1007/978-1-4613-3051-6_34
35 sgo:license sg:explorer/license/
36 sgo:sdDataset chapters
37 rdf:type schema:Chapter
38 N16e47b14a8bc455292bf1ddc0b08b7e0 schema:isbn 978-1-4613-3051-6
39 978-1-4613-3053-0
40 schema:name Genome Organization and Expression in Plants
41 rdf:type schema:Book
42 N195b40b5b44d44fcba3ea08db2388519 schema:name dimensions_id
43 schema:value pub.1024103451
44 rdf:type schema:PropertyValue
45 N2eeb54bea87d40cfa7d81cd0831be411 schema:location Boston, MA
46 schema:name Springer US
47 rdf:type schema:Organisation
48 N311d02570b0946f18a69a0497473dc0b schema:familyName Leaver
49 schema:givenName C. J.
50 rdf:type schema:Person
51 N464e192995a3488ea3da3244dbeb978d schema:name Laboratoire de Biologie Moléculaire Végétale associé au CNRS (LA 40), France
52 rdf:type schema:Organization
53 N66b5377bb2ce4919adc6364f60d0a2c6 rdf:first sg:person.060662220.40
54 rdf:rest Nd986eeca292e467f86018beb12ed3a21
55 N7a3806d2c30d46a0b163cb23d97e78d5 schema:name readcube_id
56 schema:value 72d57f304fb7e38e0c5e6e1527385c9d54cf2e4858d4e178b2e0cd9d6187b301
57 rdf:type schema:PropertyValue
58 N7b5f1889a3774ef7ae6de0e5dabd25e1 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nb87d7dda6b7841758495f21f46dbff98 rdf:first N311d02570b0946f18a69a0497473dc0b
61 rdf:rest rdf:nil
62 Nd986eeca292e467f86018beb12ed3a21 rdf:first sg:person.01230546500.45
63 rdf:rest rdf:nil
64 Nd9e622e6578748d1bb4dfe6764a13a4f schema:name Laboratoire de Biologie Moléculaire Végétale associé au CNRS (LA 40), France
65 rdf:type schema:Organization
66 Ne4ab464f29a5453c8584541632542a73 schema:name doi
67 schema:value 10.1007/978-1-4613-3051-6_34
68 rdf:type schema:PropertyValue
69 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
70 schema:name Biological Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0607 schema:inDefinedTermSet anzsrc-for:
73 schema:name Plant Biology
74 rdf:type schema:DefinedTerm
75 sg:person.01230546500.45 schema:affiliation Nd9e622e6578748d1bb4dfe6764a13a4f
76 schema:familyName Vedel
77 schema:givenName Fernand
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230546500.45
79 rdf:type schema:Person
80 sg:person.060662220.40 schema:affiliation N464e192995a3488ea3da3244dbeb978d
81 schema:familyName Quetier
82 schema:givenName Francis
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.060662220.40
84 rdf:type schema:Person
85 sg:pub.10.1038/256708a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046220219
86 https://doi.org/10.1038/256708a0
87 rdf:type schema:CreativeWork
88 sg:pub.10.1038/268365a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030631345
89 https://doi.org/10.1038/268365a0
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0005-2787(74)90059-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003439607
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0006-291x(73)91132-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041375338
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0304-4211(78)90236-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042629024
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/s0022-5320(70)80006-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000339205
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1042/bj1120777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051046533
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1073/pnas.61.1.245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004863940
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1073/pnas.69.7.1830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044540071
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1104/pp.61.3.460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004481261
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1126/science.193.4248.158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062513826
108 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...