The Loss of Quantum Coherence due to Virtual Black Holes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1984

AUTHORS

S. W. Hawking

ABSTRACT

A gravitational collapse that produces a macroscopic black hole, converts an initially pure quantum state to a final mixed state with non-zero entropy. In this paper it is shown how such loss of quantum coherence occurs on a microscopic, elementary particle level. A series of axioms are presented for the asymptotic Green’s Functions for quantum gravity in asymptotically flat space. These axioms are the same as for Quantum Field Theory in flat space-time, except that one axiom, the uniqueness of the vacuum state, is omitted. This allows diagrams for the probabilities of various final states that cannot be factored into an ordinary Feynman diagram for an amplitude and its complex conjugate diagram. Such diagrams seem to occur when the gravitational field has non-trivial topology. They cause pure initial states to evolve into mixed final states. More... »

PAGES

19-28

Book

TITLE

Quantum Gravity

ISBN

978-1-4612-9678-2
978-1-4613-2701-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-2701-1_2

DOI

http://dx.doi.org/10.1007/978-1-4613-2701-1_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041366845


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "D.A.M.T.P, Silver Street, CB3 9EW, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "D.A.M.T.P, Silver Street, CB3 9EW, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hawking", 
        "givenName": "S. W.", 
        "id": "sg:person.012212614165.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1984", 
    "datePublishedReg": "1984-01-01", 
    "description": "A gravitational collapse that produces a macroscopic black hole, converts an initially pure quantum state to a final mixed state with non-zero entropy. In this paper it is shown how such loss of quantum coherence occurs on a microscopic, elementary particle level. A series of axioms are presented for the asymptotic Green\u2019s Functions for quantum gravity in asymptotically flat space. These axioms are the same as for Quantum Field Theory in flat space-time, except that one axiom, the uniqueness of the vacuum state, is omitted. This allows diagrams for the probabilities of various final states that cannot be factored into an ordinary Feynman diagram for an amplitude and its complex conjugate diagram. Such diagrams seem to occur when the gravitational field has non-trivial topology. They cause pure initial states to evolve into mixed final states.", 
    "editor": [
      {
        "familyName": "Markov", 
        "givenName": "M. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "West", 
        "givenName": "P. C.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-2701-1_2", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-9678-2", 
        "978-1-4613-2701-1"
      ], 
      "name": "Quantum Gravity", 
      "type": "Book"
    }, 
    "keywords": [
      "quantum coherence", 
      "black holes", 
      "final state", 
      "macroscopic black holes", 
      "elementary particle level", 
      "virtual black holes", 
      "pure quantum states", 
      "pure initial states", 
      "non-zero entropy", 
      "quantum field theory", 
      "non-trivial topology", 
      "quantum states", 
      "quantum gravity", 
      "vacuum state", 
      "gravitational collapse", 
      "gravitational field", 
      "mixed state", 
      "field theory", 
      "Feynman diagrams", 
      "initial state", 
      "particle level", 
      "flat space", 
      "Green's function", 
      "holes", 
      "asymptotic Green's functions", 
      "coherence", 
      "diagram", 
      "state", 
      "gravity", 
      "series of axioms", 
      "field", 
      "amplitude", 
      "entropy", 
      "theory", 
      "such diagrams", 
      "collapse", 
      "such losses", 
      "function", 
      "space", 
      "axioms", 
      "loss", 
      "probability", 
      "uniqueness", 
      "topology", 
      "series", 
      "paper", 
      "levels"
    ], 
    "name": "The Loss of Quantum Coherence due to Virtual Black Holes", 
    "pagination": "19-28", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041366845"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-2701-1_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-2701-1_2", 
      "https://app.dimensions.ai/details/publication/pub.1041366845"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_350.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4613-2701-1_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-2701-1_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-2701-1_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-2701-1_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-2701-1_2'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      22 PREDICATES      72 URIs      65 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-2701-1_2 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nbc02edb67ee149d5a86e1f7be343439e
4 schema:datePublished 1984
5 schema:datePublishedReg 1984-01-01
6 schema:description A gravitational collapse that produces a macroscopic black hole, converts an initially pure quantum state to a final mixed state with non-zero entropy. In this paper it is shown how such loss of quantum coherence occurs on a microscopic, elementary particle level. A series of axioms are presented for the asymptotic Green’s Functions for quantum gravity in asymptotically flat space. These axioms are the same as for Quantum Field Theory in flat space-time, except that one axiom, the uniqueness of the vacuum state, is omitted. This allows diagrams for the probabilities of various final states that cannot be factored into an ordinary Feynman diagram for an amplitude and its complex conjugate diagram. Such diagrams seem to occur when the gravitational field has non-trivial topology. They cause pure initial states to evolve into mixed final states.
7 schema:editor Nd8d07a4702ec4b1d85d2bc0ec6b8ddfe
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N96120e3cc8604408a476a1fca46652b7
11 schema:keywords Feynman diagrams
12 Green's function
13 amplitude
14 asymptotic Green's functions
15 axioms
16 black holes
17 coherence
18 collapse
19 diagram
20 elementary particle level
21 entropy
22 field
23 field theory
24 final state
25 flat space
26 function
27 gravitational collapse
28 gravitational field
29 gravity
30 holes
31 initial state
32 levels
33 loss
34 macroscopic black holes
35 mixed state
36 non-trivial topology
37 non-zero entropy
38 paper
39 particle level
40 probability
41 pure initial states
42 pure quantum states
43 quantum coherence
44 quantum field theory
45 quantum gravity
46 quantum states
47 series
48 series of axioms
49 space
50 state
51 such diagrams
52 such losses
53 theory
54 topology
55 uniqueness
56 vacuum state
57 virtual black holes
58 schema:name The Loss of Quantum Coherence due to Virtual Black Holes
59 schema:pagination 19-28
60 schema:productId N91e3889c94dd45db9ab4f598ab2d1ae3
61 N9e6cc5095e104fd78f3290d3188c6fde
62 schema:publisher N3910e242641147f5a111a7d7eddacd2f
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041366845
64 https://doi.org/10.1007/978-1-4613-2701-1_2
65 schema:sdDatePublished 2022-12-01T06:52
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N7fc88ce93c694242b5ae0b24db25efdf
68 schema:url https://doi.org/10.1007/978-1-4613-2701-1_2
69 sgo:license sg:explorer/license/
70 sgo:sdDataset chapters
71 rdf:type schema:Chapter
72 N3910e242641147f5a111a7d7eddacd2f schema:name Springer Nature
73 rdf:type schema:Organisation
74 N667a3329bdcf45f7b04ff767ec2e1adb schema:familyName Markov
75 schema:givenName M. A.
76 rdf:type schema:Person
77 N7fc88ce93c694242b5ae0b24db25efdf schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N91e3889c94dd45db9ab4f598ab2d1ae3 schema:name doi
80 schema:value 10.1007/978-1-4613-2701-1_2
81 rdf:type schema:PropertyValue
82 N96120e3cc8604408a476a1fca46652b7 schema:isbn 978-1-4612-9678-2
83 978-1-4613-2701-1
84 schema:name Quantum Gravity
85 rdf:type schema:Book
86 N9e6cc5095e104fd78f3290d3188c6fde schema:name dimensions_id
87 schema:value pub.1041366845
88 rdf:type schema:PropertyValue
89 Na1d71822eeab467ea5a48c27a4114e3a rdf:first Nca7593b6f8634d539a0b0a07a27f9f53
90 rdf:rest rdf:nil
91 Nbc02edb67ee149d5a86e1f7be343439e rdf:first sg:person.012212614165.22
92 rdf:rest rdf:nil
93 Nca7593b6f8634d539a0b0a07a27f9f53 schema:familyName West
94 schema:givenName P. C.
95 rdf:type schema:Person
96 Nd8d07a4702ec4b1d85d2bc0ec6b8ddfe rdf:first N667a3329bdcf45f7b04ff767ec2e1adb
97 rdf:rest Na1d71822eeab467ea5a48c27a4114e3a
98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
102 schema:name Quantum Physics
103 rdf:type schema:DefinedTerm
104 sg:person.012212614165.22 schema:affiliation grid-institutes:None
105 schema:familyName Hawking
106 schema:givenName S. W.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012212614165.22
108 rdf:type schema:Person
109 grid-institutes:None schema:alternateName D.A.M.T.P, Silver Street, CB3 9EW, Cambridge, UK
110 schema:name D.A.M.T.P, Silver Street, CB3 9EW, Cambridge, UK
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...