Protein Kinase C and its Role in Cell Growth View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1987

AUTHORS

James R. Woodgett , Tony Hunter , Kathleen L. Gould

ABSTRACT

Protein phosphorylation is recognized as the primary mechanism for the transduction of extracellular stimuli into intracellular events (Cohen, 1982; Nestler et al.,1984). Ineukaryotes, for example, all of the biochemical actions of cAMP have been attributed to activation of cAMP-dependent protein kinase (Krebs and Beavo, 1979). Ca2+ has also been implicated as a second messenger by its ability to activate several calmodulin-dependent protein kinases and at least one phosphoprotein phosphatase (Cohen, 1985; Nairn et al., 1985). Another signal transduction pathway, the ubiquity of which has only recently been appreciated, is that of phosphatidylinositol (PI) turnover (Hokin and Hokin, 1953; Michell, 1975; for reviews, see Berridge, 1984; Hokin, 1985). Activation of this system causes hydrolysis of polyphosphoinositol lipids to form polyphosphoinositides, the most thoroughly studied of which is inositol-1,4,5-trisphosphate (hereafter termed IP3) and diacyglycerols (DAG). The primary role of IP3 is to stimulate the release of Ca2+ from intracellular stores, most probably the endoplasmic reticulum (Berridge, 1983; Streb et al.,1983), thus causing activation of Ca2+-dependent processes. The major function of DAGs is to activate a serine/threonine- specific protein kinase, termed protein kinase C (Takai et al., 1979a). The simultaneous formation of two second messengers by agonists of PI turnover endows this pathway with enhanced flexibility of response, greater possibilities of synergistic effects, and complex interactions with other signaling pathways, some aspects of which will be described below. More... »

PAGES

215-340

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-1915-3_6

DOI

http://dx.doi.org/10.1007/978-1-4613-1915-3_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035790398


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.250671.7", 
          "name": [
            "Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woodgett", 
        "givenName": "James R.", 
        "id": "sg:person.0731233037.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731233037.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.250671.7", 
          "name": [
            "Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hunter", 
        "givenName": "Tony", 
        "id": "sg:person.01356165404.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356165404.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.250671.7", 
          "name": [
            "Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gould", 
        "givenName": "Kathleen L.", 
        "id": "sg:person.01234660747.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234660747.19"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1987", 
    "datePublishedReg": "1987-01-01", 
    "description": "Protein phosphorylation is recognized as the primary mechanism for the transduction of extracellular stimuli into intracellular events (Cohen, 1982; Nestler et al.,1984). Ineukaryotes, for example, all of the biochemical actions of cAMP have been attributed to activation of cAMP-dependent protein kinase (Krebs and Beavo, 1979). Ca2+ has also been implicated as a second messenger by its ability to activate several calmodulin-dependent protein kinases and at least one phosphoprotein phosphatase (Cohen, 1985; Nairn et al., 1985). Another signal transduction pathway, the ubiquity of which has only recently been appreciated, is that of phosphatidylinositol (PI) turnover (Hokin and Hokin, 1953; Michell, 1975; for reviews, see Berridge, 1984; Hokin, 1985). Activation of this system causes hydrolysis of polyphosphoinositol lipids to form polyphosphoinositides, the most thoroughly studied of which is inositol-1,4,5-trisphosphate (hereafter termed IP3) and diacyglycerols (DAG). The primary role of IP3 is to stimulate the release of Ca2+ from intracellular stores, most probably the endoplasmic reticulum (Berridge, 1983; Streb et al.,1983), thus causing activation of Ca2+-dependent processes. The major function of DAGs is to activate a serine/threonine- specific protein kinase, termed protein kinase C (Takai et al., 1979a). The simultaneous formation of two second messengers by agonists of PI turnover endows this pathway with enhanced flexibility of response, greater possibilities of synergistic effects, and complex interactions with other signaling pathways, some aspects of which will be described below.", 
    "editor": [
      {
        "familyName": "Elson", 
        "givenName": "Elliot", 
        "type": "Person"
      }, 
      {
        "familyName": "Frazier", 
        "givenName": "William", 
        "type": "Person"
      }, 
      {
        "familyName": "Glaser", 
        "givenName": "Luis", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-1915-3_6", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-9065-0", 
        "978-1-4613-1915-3"
      ], 
      "name": "Cell Membranes", 
      "type": "Book"
    }, 
    "keywords": [
      "protein kinase", 
      "protein kinase C", 
      "serine/threonine-specific protein kinase", 
      "second messenger", 
      "threonine-specific protein kinase", 
      "kinase C", 
      "cAMP-dependent protein kinase", 
      "calmodulin-dependent protein kinase", 
      "signal transduction pathways", 
      "polyphosphoinositol lipids", 
      "extracellular stimuli", 
      "protein phosphorylation", 
      "phosphoprotein phosphatase", 
      "transduction pathways", 
      "endoplasmic reticulum", 
      "cell growth", 
      "kinase", 
      "intracellular events", 
      "activation of Ca2", 
      "phosphatidylinositol turnover", 
      "major function", 
      "diacyglycerol", 
      "pathway", 
      "biochemical actions", 
      "messenger", 
      "release of Ca2", 
      "intracellular stores", 
      "dependent processes", 
      "activation", 
      "PI turnover", 
      "turnover", 
      "primary role", 
      "complex interactions", 
      "primary mechanism", 
      "Ca2", 
      "transduction", 
      "phosphorylation", 
      "reticulum", 
      "trisphosphate", 
      "polyphosphoinositides", 
      "inositol", 
      "phosphatase", 
      "role", 
      "lipids", 
      "IP3", 
      "cAMP", 
      "growth", 
      "hydrolysis", 
      "mechanism", 
      "synergistic effect", 
      "ubiquity", 
      "interaction", 
      "enhanced flexibility", 
      "function", 
      "response", 
      "release", 
      "formation", 
      "ability", 
      "events", 
      "stimuli", 
      "action", 
      "stores", 
      "agonists", 
      "process", 
      "effect", 
      "great possibilities", 
      "aspects", 
      "possibility", 
      "simultaneous formation", 
      "flexibility", 
      "system", 
      "example"
    ], 
    "name": "Protein Kinase C and its Role in Cell Growth", 
    "pagination": "215-340", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035790398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-1915-3_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-1915-3_6", 
      "https://app.dimensions.ai/details/publication/pub.1035790398"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-10-01T07:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/chapter/chapter_48.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4613-1915-3_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1915-3_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1915-3_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1915-3_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1915-3_6'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      97 URIs      90 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-1915-3_6 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N7db47bb6623d441988349b00fe68ef9a
4 schema:datePublished 1987
5 schema:datePublishedReg 1987-01-01
6 schema:description Protein phosphorylation is recognized as the primary mechanism for the transduction of extracellular stimuli into intracellular events (Cohen, 1982; Nestler et al.,1984). Ineukaryotes, for example, all of the biochemical actions of cAMP have been attributed to activation of cAMP-dependent protein kinase (Krebs and Beavo, 1979). Ca2+ has also been implicated as a second messenger by its ability to activate several calmodulin-dependent protein kinases and at least one phosphoprotein phosphatase (Cohen, 1985; Nairn et al., 1985). Another signal transduction pathway, the ubiquity of which has only recently been appreciated, is that of phosphatidylinositol (PI) turnover (Hokin and Hokin, 1953; Michell, 1975; for reviews, see Berridge, 1984; Hokin, 1985). Activation of this system causes hydrolysis of polyphosphoinositol lipids to form polyphosphoinositides, the most thoroughly studied of which is inositol-1,4,5-trisphosphate (hereafter termed IP3) and diacyglycerols (DAG). The primary role of IP3 is to stimulate the release of Ca2+ from intracellular stores, most probably the endoplasmic reticulum (Berridge, 1983; Streb et al.,1983), thus causing activation of Ca2+-dependent processes. The major function of DAGs is to activate a serine/threonine- specific protein kinase, termed protein kinase C (Takai et al., 1979a). The simultaneous formation of two second messengers by agonists of PI turnover endows this pathway with enhanced flexibility of response, greater possibilities of synergistic effects, and complex interactions with other signaling pathways, some aspects of which will be described below.
7 schema:editor N4131e5f075ec4966ae17110c3cc83449
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Ne13b34d3198441d981c106a79caa8206
11 schema:keywords Ca2
12 IP3
13 PI turnover
14 ability
15 action
16 activation
17 activation of Ca2
18 agonists
19 aspects
20 biochemical actions
21 cAMP
22 cAMP-dependent protein kinase
23 calmodulin-dependent protein kinase
24 cell growth
25 complex interactions
26 dependent processes
27 diacyglycerol
28 effect
29 endoplasmic reticulum
30 enhanced flexibility
31 events
32 example
33 extracellular stimuli
34 flexibility
35 formation
36 function
37 great possibilities
38 growth
39 hydrolysis
40 inositol
41 interaction
42 intracellular events
43 intracellular stores
44 kinase
45 kinase C
46 lipids
47 major function
48 mechanism
49 messenger
50 pathway
51 phosphatase
52 phosphatidylinositol turnover
53 phosphoprotein phosphatase
54 phosphorylation
55 polyphosphoinositides
56 polyphosphoinositol lipids
57 possibility
58 primary mechanism
59 primary role
60 process
61 protein kinase
62 protein kinase C
63 protein phosphorylation
64 release
65 release of Ca2
66 response
67 reticulum
68 role
69 second messenger
70 serine/threonine-specific protein kinase
71 signal transduction pathways
72 simultaneous formation
73 stimuli
74 stores
75 synergistic effect
76 system
77 threonine-specific protein kinase
78 transduction
79 transduction pathways
80 trisphosphate
81 turnover
82 ubiquity
83 schema:name Protein Kinase C and its Role in Cell Growth
84 schema:pagination 215-340
85 schema:productId N8ea479fce95a4523bf999b345fdc7231
86 N9a1edadd494544ca867fced8b2e1f141
87 schema:publisher Ncaeb0a89d0b64b559a655abca48586f6
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035790398
89 https://doi.org/10.1007/978-1-4613-1915-3_6
90 schema:sdDatePublished 2022-10-01T07:00
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N6d41c64ae56243a0a3e7f94e640780d8
93 schema:url https://doi.org/10.1007/978-1-4613-1915-3_6
94 sgo:license sg:explorer/license/
95 sgo:sdDataset chapters
96 rdf:type schema:Chapter
97 N388f3f776ca14f35ba6f13f011b2f09d rdf:first sg:person.01234660747.19
98 rdf:rest rdf:nil
99 N4131e5f075ec4966ae17110c3cc83449 rdf:first N92fa57102a164f599d039a2dbd36382c
100 rdf:rest N673f4b15e92e42888a57a23a9f5f42e3
101 N60ec29e1bb6d4698b2cc67932febc777 schema:familyName Glaser
102 schema:givenName Luis
103 rdf:type schema:Person
104 N673f4b15e92e42888a57a23a9f5f42e3 rdf:first Nebe17cbc3de640e1b54e66266b2974dc
105 rdf:rest Nde5ab87d3d07480ca41d6f910565bbc3
106 N6d41c64ae56243a0a3e7f94e640780d8 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N7db47bb6623d441988349b00fe68ef9a rdf:first sg:person.0731233037.88
109 rdf:rest N8cf8fd40b8c241509ee8e93870f39103
110 N8cf8fd40b8c241509ee8e93870f39103 rdf:first sg:person.01356165404.94
111 rdf:rest N388f3f776ca14f35ba6f13f011b2f09d
112 N8ea479fce95a4523bf999b345fdc7231 schema:name doi
113 schema:value 10.1007/978-1-4613-1915-3_6
114 rdf:type schema:PropertyValue
115 N92fa57102a164f599d039a2dbd36382c schema:familyName Elson
116 schema:givenName Elliot
117 rdf:type schema:Person
118 N9a1edadd494544ca867fced8b2e1f141 schema:name dimensions_id
119 schema:value pub.1035790398
120 rdf:type schema:PropertyValue
121 Ncaeb0a89d0b64b559a655abca48586f6 schema:name Springer Nature
122 rdf:type schema:Organisation
123 Nde5ab87d3d07480ca41d6f910565bbc3 rdf:first N60ec29e1bb6d4698b2cc67932febc777
124 rdf:rest rdf:nil
125 Ne13b34d3198441d981c106a79caa8206 schema:isbn 978-1-4612-9065-0
126 978-1-4613-1915-3
127 schema:name Cell Membranes
128 rdf:type schema:Book
129 Nebe17cbc3de640e1b54e66266b2974dc schema:familyName Frazier
130 schema:givenName William
131 rdf:type schema:Person
132 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biological Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biochemistry and Cell Biology
137 rdf:type schema:DefinedTerm
138 sg:person.01234660747.19 schema:affiliation grid-institutes:grid.250671.7
139 schema:familyName Gould
140 schema:givenName Kathleen L.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234660747.19
142 rdf:type schema:Person
143 sg:person.01356165404.94 schema:affiliation grid-institutes:grid.250671.7
144 schema:familyName Hunter
145 schema:givenName Tony
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356165404.94
147 rdf:type schema:Person
148 sg:person.0731233037.88 schema:affiliation grid-institutes:grid.250671.7
149 schema:familyName Woodgett
150 schema:givenName James R.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731233037.88
152 rdf:type schema:Person
153 grid-institutes:grid.250671.7 schema:alternateName Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA
154 schema:name Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...