Protein Kinase C and its Role in Cell Growth View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1987

AUTHORS

James R. Woodgett , Tony Hunter , Kathleen L. Gould

ABSTRACT

Protein phosphorylation is recognized as the primary mechanism for the transduction of extracellular stimuli into intracellular events (Cohen, 1982; Nestler et al.,1984). Ineukaryotes, for example, all of the biochemical actions of cAMP have been attributed to activation of cAMP-dependent protein kinase (Krebs and Beavo, 1979). Ca2+ has also been implicated as a second messenger by its ability to activate several calmodulin-dependent protein kinases and at least one phosphoprotein phosphatase (Cohen, 1985; Nairn et al., 1985). Another signal transduction pathway, the ubiquity of which has only recently been appreciated, is that of phosphatidylinositol (PI) turnover (Hokin and Hokin, 1953; Michell, 1975; for reviews, see Berridge, 1984; Hokin, 1985). Activation of this system causes hydrolysis of polyphosphoinositol lipids to form polyphosphoinositides, the most thoroughly studied of which is inositol-1,4,5-trisphosphate (hereafter termed IP3) and diacyglycerols (DAG). The primary role of IP3 is to stimulate the release of Ca2+ from intracellular stores, most probably the endoplasmic reticulum (Berridge, 1983; Streb et al.,1983), thus causing activation of Ca2+-dependent processes. The major function of DAGs is to activate a serine/threonine- specific protein kinase, termed protein kinase C (Takai et al., 1979a). The simultaneous formation of two second messengers by agonists of PI turnover endows this pathway with enhanced flexibility of response, greater possibilities of synergistic effects, and complex interactions with other signaling pathways, some aspects of which will be described below. More... »

PAGES

215-340

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-1915-3_6

DOI

http://dx.doi.org/10.1007/978-1-4613-1915-3_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035790398


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.250671.7", 
          "name": [
            "Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Woodgett", 
        "givenName": "James R.", 
        "id": "sg:person.0731233037.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731233037.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.250671.7", 
          "name": [
            "Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hunter", 
        "givenName": "Tony", 
        "id": "sg:person.01356165404.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356165404.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.250671.7", 
          "name": [
            "Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gould", 
        "givenName": "Kathleen L.", 
        "id": "sg:person.01234660747.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234660747.19"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1987", 
    "datePublishedReg": "1987-01-01", 
    "description": "Protein phosphorylation is recognized as the primary mechanism for the transduction of extracellular stimuli into intracellular events (Cohen, 1982; Nestler et al.,1984). Ineukaryotes, for example, all of the biochemical actions of cAMP have been attributed to activation of cAMP-dependent protein kinase (Krebs and Beavo, 1979). Ca2+ has also been implicated as a second messenger by its ability to activate several calmodulin-dependent protein kinases and at least one phosphoprotein phosphatase (Cohen, 1985; Nairn et al., 1985). Another signal transduction pathway, the ubiquity of which has only recently been appreciated, is that of phosphatidylinositol (PI) turnover (Hokin and Hokin, 1953; Michell, 1975; for reviews, see Berridge, 1984; Hokin, 1985). Activation of this system causes hydrolysis of polyphosphoinositol lipids to form polyphosphoinositides, the most thoroughly studied of which is inositol-1,4,5-trisphosphate (hereafter termed IP3) and diacyglycerols (DAG). The primary role of IP3 is to stimulate the release of Ca2+ from intracellular stores, most probably the endoplasmic reticulum (Berridge, 1983; Streb et al.,1983), thus causing activation of Ca2+-dependent processes. The major function of DAGs is to activate a serine/threonine- specific protein kinase, termed protein kinase C (Takai et al., 1979a). The simultaneous formation of two second messengers by agonists of PI turnover endows this pathway with enhanced flexibility of response, greater possibilities of synergistic effects, and complex interactions with other signaling pathways, some aspects of which will be described below.", 
    "editor": [
      {
        "familyName": "Elson", 
        "givenName": "Elliot", 
        "type": "Person"
      }, 
      {
        "familyName": "Frazier", 
        "givenName": "William", 
        "type": "Person"
      }, 
      {
        "familyName": "Glaser", 
        "givenName": "Luis", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-1915-3_6", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-9065-0", 
        "978-1-4613-1915-3"
      ], 
      "name": "Cell Membranes", 
      "type": "Book"
    }, 
    "keywords": [
      "protein kinase", 
      "protein kinase C", 
      "serine/threonine-specific protein kinase", 
      "second messenger", 
      "threonine-specific protein kinase", 
      "kinase C", 
      "cAMP-dependent protein kinase", 
      "calmodulin-dependent protein kinase", 
      "signal transduction pathways", 
      "polyphosphoinositol lipids", 
      "extracellular stimuli", 
      "protein phosphorylation", 
      "phosphoprotein phosphatase", 
      "transduction pathways", 
      "endoplasmic reticulum", 
      "cell growth", 
      "kinase", 
      "intracellular events", 
      "activation of Ca2", 
      "phosphatidylinositol turnover", 
      "major function", 
      "diacyglycerol", 
      "pathway", 
      "biochemical actions", 
      "messenger", 
      "release of Ca2", 
      "intracellular stores", 
      "dependent processes", 
      "activation", 
      "PI turnover", 
      "turnover", 
      "primary role", 
      "complex interactions", 
      "primary mechanism", 
      "Ca2", 
      "transduction", 
      "phosphorylation", 
      "reticulum", 
      "trisphosphate", 
      "polyphosphoinositides", 
      "inositol", 
      "phosphatase", 
      "role", 
      "lipids", 
      "IP3", 
      "cAMP", 
      "growth", 
      "hydrolysis", 
      "mechanism", 
      "synergistic effect", 
      "ubiquity", 
      "interaction", 
      "enhanced flexibility", 
      "function", 
      "response", 
      "release", 
      "formation", 
      "ability", 
      "events", 
      "stimuli", 
      "action", 
      "stores", 
      "agonists", 
      "process", 
      "effect", 
      "great possibilities", 
      "aspects", 
      "possibility", 
      "simultaneous formation", 
      "flexibility", 
      "system", 
      "example"
    ], 
    "name": "Protein Kinase C and its Role in Cell Growth", 
    "pagination": "215-340", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035790398"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-1915-3_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-1915-3_6", 
      "https://app.dimensions.ai/details/publication/pub.1035790398"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_72.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4613-1915-3_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1915-3_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1915-3_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1915-3_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1915-3_6'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      97 URIs      90 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-1915-3_6 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nbb357759930d47c3937c8f3e5f739a3e
4 schema:datePublished 1987
5 schema:datePublishedReg 1987-01-01
6 schema:description Protein phosphorylation is recognized as the primary mechanism for the transduction of extracellular stimuli into intracellular events (Cohen, 1982; Nestler et al.,1984). Ineukaryotes, for example, all of the biochemical actions of cAMP have been attributed to activation of cAMP-dependent protein kinase (Krebs and Beavo, 1979). Ca2+ has also been implicated as a second messenger by its ability to activate several calmodulin-dependent protein kinases and at least one phosphoprotein phosphatase (Cohen, 1985; Nairn et al., 1985). Another signal transduction pathway, the ubiquity of which has only recently been appreciated, is that of phosphatidylinositol (PI) turnover (Hokin and Hokin, 1953; Michell, 1975; for reviews, see Berridge, 1984; Hokin, 1985). Activation of this system causes hydrolysis of polyphosphoinositol lipids to form polyphosphoinositides, the most thoroughly studied of which is inositol-1,4,5-trisphosphate (hereafter termed IP3) and diacyglycerols (DAG). The primary role of IP3 is to stimulate the release of Ca2+ from intracellular stores, most probably the endoplasmic reticulum (Berridge, 1983; Streb et al.,1983), thus causing activation of Ca2+-dependent processes. The major function of DAGs is to activate a serine/threonine- specific protein kinase, termed protein kinase C (Takai et al., 1979a). The simultaneous formation of two second messengers by agonists of PI turnover endows this pathway with enhanced flexibility of response, greater possibilities of synergistic effects, and complex interactions with other signaling pathways, some aspects of which will be described below.
7 schema:editor Nac8aa02af738485c9a7cc64293c94a4f
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Ncf515995b2df4f2a81c4c755b4a12951
11 schema:keywords Ca2
12 IP3
13 PI turnover
14 ability
15 action
16 activation
17 activation of Ca2
18 agonists
19 aspects
20 biochemical actions
21 cAMP
22 cAMP-dependent protein kinase
23 calmodulin-dependent protein kinase
24 cell growth
25 complex interactions
26 dependent processes
27 diacyglycerol
28 effect
29 endoplasmic reticulum
30 enhanced flexibility
31 events
32 example
33 extracellular stimuli
34 flexibility
35 formation
36 function
37 great possibilities
38 growth
39 hydrolysis
40 inositol
41 interaction
42 intracellular events
43 intracellular stores
44 kinase
45 kinase C
46 lipids
47 major function
48 mechanism
49 messenger
50 pathway
51 phosphatase
52 phosphatidylinositol turnover
53 phosphoprotein phosphatase
54 phosphorylation
55 polyphosphoinositides
56 polyphosphoinositol lipids
57 possibility
58 primary mechanism
59 primary role
60 process
61 protein kinase
62 protein kinase C
63 protein phosphorylation
64 release
65 release of Ca2
66 response
67 reticulum
68 role
69 second messenger
70 serine/threonine-specific protein kinase
71 signal transduction pathways
72 simultaneous formation
73 stimuli
74 stores
75 synergistic effect
76 system
77 threonine-specific protein kinase
78 transduction
79 transduction pathways
80 trisphosphate
81 turnover
82 ubiquity
83 schema:name Protein Kinase C and its Role in Cell Growth
84 schema:pagination 215-340
85 schema:productId N231b349a590449929339e136b98fcf1c
86 N8221eced165d4779b44d48f9c567d05d
87 schema:publisher Nedd4e5e1f36f4ddd8bbc5e94a6a72a75
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035790398
89 https://doi.org/10.1007/978-1-4613-1915-3_6
90 schema:sdDatePublished 2022-11-24T21:20
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N3bceff7fa2c34212ad4e6896688615e0
93 schema:url https://doi.org/10.1007/978-1-4613-1915-3_6
94 sgo:license sg:explorer/license/
95 sgo:sdDataset chapters
96 rdf:type schema:Chapter
97 N0349fe541cbf4777bdfb5c4e4ab1b6b8 schema:familyName Elson
98 schema:givenName Elliot
99 rdf:type schema:Person
100 N19085321163f42969d4188ce21bec87f rdf:first N2af625752b3b4ea5aff82614bb3fabd1
101 rdf:rest N36586760f7114a65997823d259429b6c
102 N231b349a590449929339e136b98fcf1c schema:name dimensions_id
103 schema:value pub.1035790398
104 rdf:type schema:PropertyValue
105 N2af625752b3b4ea5aff82614bb3fabd1 schema:familyName Frazier
106 schema:givenName William
107 rdf:type schema:Person
108 N32c9c88d159a4382bd210582e57cbfd5 schema:familyName Glaser
109 schema:givenName Luis
110 rdf:type schema:Person
111 N36586760f7114a65997823d259429b6c rdf:first N32c9c88d159a4382bd210582e57cbfd5
112 rdf:rest rdf:nil
113 N3bceff7fa2c34212ad4e6896688615e0 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N8221eced165d4779b44d48f9c567d05d schema:name doi
116 schema:value 10.1007/978-1-4613-1915-3_6
117 rdf:type schema:PropertyValue
118 Na839f67351484a6c85694c07deda04d8 rdf:first sg:person.01234660747.19
119 rdf:rest rdf:nil
120 Nac8aa02af738485c9a7cc64293c94a4f rdf:first N0349fe541cbf4777bdfb5c4e4ab1b6b8
121 rdf:rest N19085321163f42969d4188ce21bec87f
122 Nbb357759930d47c3937c8f3e5f739a3e rdf:first sg:person.0731233037.88
123 rdf:rest Nd4a1254b0abd496da13a758bee3a5143
124 Ncf515995b2df4f2a81c4c755b4a12951 schema:isbn 978-1-4612-9065-0
125 978-1-4613-1915-3
126 schema:name Cell Membranes
127 rdf:type schema:Book
128 Nd4a1254b0abd496da13a758bee3a5143 rdf:first sg:person.01356165404.94
129 rdf:rest Na839f67351484a6c85694c07deda04d8
130 Nedd4e5e1f36f4ddd8bbc5e94a6a72a75 schema:name Springer Nature
131 rdf:type schema:Organisation
132 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
133 schema:name Biological Sciences
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biochemistry and Cell Biology
137 rdf:type schema:DefinedTerm
138 sg:person.01234660747.19 schema:affiliation grid-institutes:grid.250671.7
139 schema:familyName Gould
140 schema:givenName Kathleen L.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234660747.19
142 rdf:type schema:Person
143 sg:person.01356165404.94 schema:affiliation grid-institutes:grid.250671.7
144 schema:familyName Hunter
145 schema:givenName Tony
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356165404.94
147 rdf:type schema:Person
148 sg:person.0731233037.88 schema:affiliation grid-institutes:grid.250671.7
149 schema:familyName Woodgett
150 schema:givenName James R.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731233037.88
152 rdf:type schema:Person
153 grid-institutes:grid.250671.7 schema:alternateName Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA
154 schema:name Molecular Biology and Virology Laboratory, The Salk Institute, 92138, San Diego, California, USA
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...