Codes Based on Complete Graphs View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1996

AUTHORS

Dieter Jungnickel , Marialuisa J. De Resmini , Scott A. Vanstone

ABSTRACT

We consider the problem of embedding the even graphical code based on the complete graph on n vertices into a shortening of a Hamming code of length 2m - 1, where m = h(n) should be as small as possible. As it turns out, this problem is equivalent to the existence problem for optimal codes with minimum distance 5, and optimal embeddings can always be realized as graphical codes based on Kn. As a consequence, we are able to determine h(n) exactly for all n of the form 2k + 1 and to narrow down the possibilities in general to two or three conceivable values. More... »

PAGES

159-165

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-1395-3_11

DOI

http://dx.doi.org/10.1007/978-1-4613-1395-3_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021658850


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0804", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Data Format", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lehrstuhl f\u00fcr Angewandte Mathematik II, Universit\u00e4t Augsburg, D-86135, Augsburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Lehrstuhl f\u00fcr Angewandte Mathematik II, Universit\u00e4t Augsburg, D-86135, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jungnickel", 
        "givenName": "Dieter", 
        "id": "sg:person.016273474670.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, 2, Piazzale Aldo Moro, I-00185, Roma, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7841.a", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Roma \u201cLa Sapienza\u201d, 2, Piazzale Aldo Moro, I-00185, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Resmini", 
        "givenName": "Marialuisa J.", 
        "id": "sg:person.012712302064.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012712302064.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ont., Canada", 
          "id": "http://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Dept. of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ont., Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vanstone", 
        "givenName": "Scott A.", 
        "id": "sg:person.010344544767.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1996", 
    "datePublishedReg": "1996-01-01", 
    "description": "We consider the problem of embedding the even graphical code based on the complete graph on n vertices into a shortening of a Hamming code of length 2m - 1, where m = h(n) should be as small as possible. As it turns out, this problem is equivalent to the existence problem for optimal codes with minimum distance 5, and optimal embeddings can always be realized as graphical codes based on Kn. As a consequence, we are able to determine h(n) exactly for all n of the form 2k + 1 and to narrow down the possibilities in general to two or three conceivable values.", 
    "editor": [
      {
        "familyName": "Jungnickel", 
        "givenName": "Dieter", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-1395-3_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-8604-2", 
        "978-1-4613-1395-3"
      ], 
      "name": "Designs and Finite Geometries", 
      "type": "Book"
    }, 
    "keywords": [
      "graphical codes", 
      "Hamming code", 
      "optimal codes", 
      "optimal embedding", 
      "code", 
      "complete graph", 
      "graph", 
      "embedding", 
      "existence problem", 
      "vertices", 
      "form 2k", 
      "minimum distance 5", 
      "conceivable values", 
      "distance 5", 
      "possibility", 
      "values", 
      "length", 
      "consequences", 
      "Kn", 
      "problem", 
      "shortening"
    ], 
    "name": "Codes Based on Complete Graphs", 
    "pagination": "159-165", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021658850"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-1395-3_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-1395-3_11", 
      "https://app.dimensions.ai/details/publication/pub.1021658850"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_297.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4613-1395-3_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1395-3_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1395-3_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1395-3_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1395-3_11'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      23 PREDICATES      47 URIs      40 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-1395-3_11 schema:about anzsrc-for:08
2 anzsrc-for:0804
3 schema:author Nb332ef68eb62438b8c2ae1b16e996da5
4 schema:datePublished 1996
5 schema:datePublishedReg 1996-01-01
6 schema:description We consider the problem of embedding the even graphical code based on the complete graph on n vertices into a shortening of a Hamming code of length 2m - 1, where m = h(n) should be as small as possible. As it turns out, this problem is equivalent to the existence problem for optimal codes with minimum distance 5, and optimal embeddings can always be realized as graphical codes based on Kn. As a consequence, we are able to determine h(n) exactly for all n of the form 2k + 1 and to narrow down the possibilities in general to two or three conceivable values.
7 schema:editor Nb839e91d80fc4eafa4df3d367c42439e
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N28b4083b2ec84a2696af5b3cf8be399d
12 schema:keywords Hamming code
13 Kn
14 code
15 complete graph
16 conceivable values
17 consequences
18 distance 5
19 embedding
20 existence problem
21 form 2k
22 graph
23 graphical codes
24 length
25 minimum distance 5
26 optimal codes
27 optimal embedding
28 possibility
29 problem
30 shortening
31 values
32 vertices
33 schema:name Codes Based on Complete Graphs
34 schema:pagination 159-165
35 schema:productId N8fcba0025ddc4ec989b40f7b6c029f39
36 Nc51e3514576c4069b43926b6c062e7b2
37 schema:publisher N8582a14e02b344a0a754fb96acaafd2a
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021658850
39 https://doi.org/10.1007/978-1-4613-1395-3_11
40 schema:sdDatePublished 2022-06-01T22:31
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Ndf5dc1cb51a14b908e6469f53d6ffb00
43 schema:url https://doi.org/10.1007/978-1-4613-1395-3_11
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N28b4083b2ec84a2696af5b3cf8be399d schema:isbn 978-1-4612-8604-2
48 978-1-4613-1395-3
49 schema:name Designs and Finite Geometries
50 rdf:type schema:Book
51 N8184b4722585498e9ca020e2186f9685 schema:familyName Jungnickel
52 schema:givenName Dieter
53 rdf:type schema:Person
54 N8582a14e02b344a0a754fb96acaafd2a schema:name Springer Nature
55 rdf:type schema:Organisation
56 N8fcba0025ddc4ec989b40f7b6c029f39 schema:name dimensions_id
57 schema:value pub.1021658850
58 rdf:type schema:PropertyValue
59 Nb332ef68eb62438b8c2ae1b16e996da5 rdf:first sg:person.016273474670.91
60 rdf:rest Nf4f4483b8def468cb007e07751f594a5
61 Nb839e91d80fc4eafa4df3d367c42439e rdf:first N8184b4722585498e9ca020e2186f9685
62 rdf:rest rdf:nil
63 Nc51e3514576c4069b43926b6c062e7b2 schema:name doi
64 schema:value 10.1007/978-1-4613-1395-3_11
65 rdf:type schema:PropertyValue
66 Ndf5dc1cb51a14b908e6469f53d6ffb00 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nf4f4483b8def468cb007e07751f594a5 rdf:first sg:person.012712302064.14
69 rdf:rest Nfa05fc51a09b45d0a73f654ee9242821
70 Nfa05fc51a09b45d0a73f654ee9242821 rdf:first sg:person.010344544767.07
71 rdf:rest rdf:nil
72 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
73 schema:name Information and Computing Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0804 schema:inDefinedTermSet anzsrc-for:
76 schema:name Data Format
77 rdf:type schema:DefinedTerm
78 sg:person.010344544767.07 schema:affiliation grid-institutes:grid.46078.3d
79 schema:familyName Vanstone
80 schema:givenName Scott A.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010344544767.07
82 rdf:type schema:Person
83 sg:person.012712302064.14 schema:affiliation grid-institutes:grid.7841.a
84 schema:familyName De Resmini
85 schema:givenName Marialuisa J.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012712302064.14
87 rdf:type schema:Person
88 sg:person.016273474670.91 schema:affiliation grid-institutes:grid.7307.3
89 schema:familyName Jungnickel
90 schema:givenName Dieter
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016273474670.91
92 rdf:type schema:Person
93 grid-institutes:grid.46078.3d schema:alternateName Dept. of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ont., Canada
94 schema:name Dept. of Combinatorics and Optimization, University of Waterloo, N2L 3G1, Waterloo, Ont., Canada
95 rdf:type schema:Organization
96 grid-institutes:grid.7307.3 schema:alternateName Lehrstuhl für Angewandte Mathematik II, Universität Augsburg, D-86135, Augsburg, Germany
97 schema:name Lehrstuhl für Angewandte Mathematik II, Universität Augsburg, D-86135, Augsburg, Germany
98 rdf:type schema:Organization
99 grid-institutes:grid.7841.a schema:alternateName Dipartimento di Matematica, Università di Roma “La Sapienza”, 2, Piazzale Aldo Moro, I-00185, Roma, Italy
100 schema:name Dipartimento di Matematica, Università di Roma “La Sapienza”, 2, Piazzale Aldo Moro, I-00185, Roma, Italy
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...