Estimations for the Solutions of Operator Linear Differential Equations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1988

AUTHORS

Endre Pap , Đurđica Takači

ABSTRACT

In this paper we observe the approximate solution of the linear operator differential equation and estimate the error of approximation. For this purpose we use the results from [6]. They enable us to introduce some measures of approximation on the space L of locally integrable functions on [0,∞) and on the field of Mikusiński operators. More... »

PAGES

267-277

Book

TITLE

Generalized Functions, Convergence Structures, and Their Applications

ISBN

978-1-4612-8312-6
978-1-4613-1055-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-1055-6_27

DOI

http://dx.doi.org/10.1007/978-1-4613-1055-6_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043610734


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics, University of Novi Sad, dr I. \u0110uri\u010di\u0107a 4, 21000, Novi Sad, Yugoslavia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Mathematics, University of Novi Sad, dr I. \u0110uri\u010di\u0107a 4, 21000, Novi Sad, Yugoslavia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pap", 
        "givenName": "Endre", 
        "id": "sg:person.012354470173.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics, University of Novi Sad, dr I. \u0110uri\u010di\u0107a 4, 21000, Novi Sad, Yugoslavia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Mathematics, University of Novi Sad, dr I. \u0110uri\u010di\u0107a 4, 21000, Novi Sad, Yugoslavia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taka\u010di", 
        "givenName": "\u0110ur\u0111ica", 
        "type": "Person"
      }
    ], 
    "datePublished": "1988", 
    "datePublishedReg": "1988-01-01", 
    "description": "In this paper we observe the approximate solution of the linear operator differential equation and estimate the error of approximation. For this purpose we use the results from [6]. They enable us to introduce some measures of approximation on the space L of locally integrable functions on [0,\u221e) and on the field of Mikusi\u0144ski operators.", 
    "editor": [
      {
        "familyName": "Stankovi\u0107", 
        "givenName": "Bogoljub", 
        "type": "Person"
      }, 
      {
        "familyName": "Pap", 
        "givenName": "Endre", 
        "type": "Person"
      }, 
      {
        "familyName": "Pilipovi\u0107", 
        "givenName": "Stevan", 
        "type": "Person"
      }, 
      {
        "familyName": "Vladimirov", 
        "givenName": "Vasilij S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-1055-6_27", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-8312-6", 
        "978-1-4613-1055-6"
      ], 
      "name": "Generalized Functions, Convergence Structures, and Their Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "differential equations", 
      "operator differential equation", 
      "linear differential equations", 
      "error of approximation", 
      "measure of approximation", 
      "Mikusi\u0144ski operators", 
      "approximate solution", 
      "integrable functions", 
      "space L", 
      "equations", 
      "approximation", 
      "solution", 
      "operators", 
      "estimation", 
      "error", 
      "function", 
      "field", 
      "results", 
      "measures", 
      "purpose", 
      "paper", 
      "linear operator differential equation", 
      "Operator Linear Differential Equations"
    ], 
    "name": "Estimations for the Solutions of Operator Linear Differential Equations", 
    "pagination": "267-277", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043610734"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-1055-6_27"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-1055-6_27", 
      "https://app.dimensions.ai/details/publication/pub.1043610734"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_386.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4613-1055-6_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1055-6_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1055-6_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1055-6_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1055-6_27'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      23 PREDICATES      49 URIs      42 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-1055-6_27 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N333ac8d993384123afbefd949e4bbab8
4 schema:datePublished 1988
5 schema:datePublishedReg 1988-01-01
6 schema:description In this paper we observe the approximate solution of the linear operator differential equation and estimate the error of approximation. For this purpose we use the results from [6]. They enable us to introduce some measures of approximation on the space L of locally integrable functions on [0,∞) and on the field of Mikusiński operators.
7 schema:editor N254a21e82ce0402a8216d86a987f43ff
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne8dd7aea59214d33b585c864d0d18609
12 schema:keywords Mikusiński operators
13 Operator Linear Differential Equations
14 approximate solution
15 approximation
16 differential equations
17 equations
18 error
19 error of approximation
20 estimation
21 field
22 function
23 integrable functions
24 linear differential equations
25 linear operator differential equation
26 measure of approximation
27 measures
28 operator differential equation
29 operators
30 paper
31 purpose
32 results
33 solution
34 space L
35 schema:name Estimations for the Solutions of Operator Linear Differential Equations
36 schema:pagination 267-277
37 schema:productId N09789ff1b16f41c5b672d43c03acd22c
38 N80455b3759474b07ada507cd7286749e
39 schema:publisher Nd3f3e8040adf499b83b4b51ce3fefb67
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043610734
41 https://doi.org/10.1007/978-1-4613-1055-6_27
42 schema:sdDatePublished 2021-11-01T18:59
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nb8a28219db5b4fc2869ea167f17e3731
45 schema:url https://doi.org/10.1007/978-1-4613-1055-6_27
46 sgo:license sg:explorer/license/
47 sgo:sdDataset chapters
48 rdf:type schema:Chapter
49 N09789ff1b16f41c5b672d43c03acd22c schema:name doi
50 schema:value 10.1007/978-1-4613-1055-6_27
51 rdf:type schema:PropertyValue
52 N254a21e82ce0402a8216d86a987f43ff rdf:first N4c1365aa582e43f0912cb052ccc91fba
53 rdf:rest Ne4fd76c13c7c426e8c642092ae49a57d
54 N333ac8d993384123afbefd949e4bbab8 rdf:first sg:person.012354470173.10
55 rdf:rest N58b899bcfad74d2ba887836efd807353
56 N3bde86e3e5594a06894460bedc2a194a schema:familyName Pap
57 schema:givenName Endre
58 rdf:type schema:Person
59 N4c1365aa582e43f0912cb052ccc91fba schema:familyName Stanković
60 schema:givenName Bogoljub
61 rdf:type schema:Person
62 N58b899bcfad74d2ba887836efd807353 rdf:first N6115cb1cdebd40ce9faf63592f8738fc
63 rdf:rest rdf:nil
64 N5ac952d17210464fa448265712c0e525 rdf:first Ne3320d49f40c460cab244d3fd1e91bb1
65 rdf:rest Ndf3a81113829455aa8fbe3525bdbb1b4
66 N6115cb1cdebd40ce9faf63592f8738fc schema:affiliation grid-institutes:None
67 schema:familyName Takači
68 schema:givenName Đurđica
69 rdf:type schema:Person
70 N80455b3759474b07ada507cd7286749e schema:name dimensions_id
71 schema:value pub.1043610734
72 rdf:type schema:PropertyValue
73 Nb8a28219db5b4fc2869ea167f17e3731 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nd3f3e8040adf499b83b4b51ce3fefb67 schema:name Springer Nature
76 rdf:type schema:Organisation
77 Ndf3a81113829455aa8fbe3525bdbb1b4 rdf:first Ne1f014e0dc1f4ca4ba9f772153358b03
78 rdf:rest rdf:nil
79 Ne1f014e0dc1f4ca4ba9f772153358b03 schema:familyName Vladimirov
80 schema:givenName Vasilij S.
81 rdf:type schema:Person
82 Ne3320d49f40c460cab244d3fd1e91bb1 schema:familyName Pilipović
83 schema:givenName Stevan
84 rdf:type schema:Person
85 Ne4fd76c13c7c426e8c642092ae49a57d rdf:first N3bde86e3e5594a06894460bedc2a194a
86 rdf:rest N5ac952d17210464fa448265712c0e525
87 Ne8dd7aea59214d33b585c864d0d18609 schema:isbn 978-1-4612-8312-6
88 978-1-4613-1055-6
89 schema:name Generalized Functions, Convergence Structures, and Their Applications
90 rdf:type schema:Book
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
95 schema:name Pure Mathematics
96 rdf:type schema:DefinedTerm
97 sg:person.012354470173.10 schema:affiliation grid-institutes:None
98 schema:familyName Pap
99 schema:givenName Endre
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10
101 rdf:type schema:Person
102 grid-institutes:None schema:alternateName Institute of Mathematics, University of Novi Sad, dr I. Đuričića 4, 21000, Novi Sad, Yugoslavia
103 schema:name Institute of Mathematics, University of Novi Sad, dr I. Đuričića 4, 21000, Novi Sad, Yugoslavia
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...