Estimations for the Solutions of Operator Linear Differential Equations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1988

AUTHORS

Endre Pap , Đurđica Takači

ABSTRACT

In this paper we observe the approximate solution of the linear operator differential equation and estimate the error of approximation. For this purpose we use the results from [6]. They enable us to introduce some measures of approximation on the space L of locally integrable functions on [0,∞) and on the field of Mikusiński operators. More... »

PAGES

267-277

Book

TITLE

Generalized Functions, Convergence Structures, and Their Applications

ISBN

978-1-4612-8312-6
978-1-4613-1055-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-1055-6_27

DOI

http://dx.doi.org/10.1007/978-1-4613-1055-6_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043610734


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute of Mathematics, University of Novi Sad, dr I. \u0110uri\u010di\u0107a 4, 21000, Novi Sad, Yugoslavia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pap", 
        "givenName": "Endre", 
        "id": "sg:person.012354470173.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Mathematics, University of Novi Sad, dr I. \u0110uri\u010di\u0107a 4, 21000, Novi Sad, Yugoslavia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taka\u010di", 
        "givenName": "\u0110ur\u0111ica", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.2307/2373613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069900154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm-75-3-313-333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092013818"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988", 
    "datePublishedReg": "1988-01-01", 
    "description": "In this paper we observe the approximate solution of the linear operator differential equation and estimate the error of approximation. For this purpose we use the results from [6]. They enable us to introduce some measures of approximation on the space L of locally integrable functions on [0,\u221e) and on the field of Mikusi\u0144ski operators.", 
    "editor": [
      {
        "familyName": "Stankovi\u0107", 
        "givenName": "Bogoljub", 
        "type": "Person"
      }, 
      {
        "familyName": "Pap", 
        "givenName": "Endre", 
        "type": "Person"
      }, 
      {
        "familyName": "Pilipovi\u0107", 
        "givenName": "Stevan", 
        "type": "Person"
      }, 
      {
        "familyName": "Vladimirov", 
        "givenName": "Vasilij S.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-1055-6_27", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-8312-6", 
        "978-1-4613-1055-6"
      ], 
      "name": "Generalized Functions, Convergence Structures, and Their Applications", 
      "type": "Book"
    }, 
    "name": "Estimations for the Solutions of Operator Linear Differential Equations", 
    "pagination": "267-277", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043610734"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-1055-6_27"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cfbb75765c833d5a11ca732467c046a287aacd1e66394219d99775d3dafda021"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-1055-6_27", 
      "https://app.dimensions.ai/details/publication/pub.1043610734"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T10:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106825_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4613-1055-6_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1055-6_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1055-6_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1055-6_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-1055-6_27'


 

This table displays all metadata directly associated to this object as RDF triples.

93 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-1055-6_27 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nfa151905b916462498fe7a0a5a63e888
4 schema:citation https://doi.org/10.2307/2373613
5 https://doi.org/10.4064/sm-75-3-313-333
6 schema:datePublished 1988
7 schema:datePublishedReg 1988-01-01
8 schema:description In this paper we observe the approximate solution of the linear operator differential equation and estimate the error of approximation. For this purpose we use the results from [6]. They enable us to introduce some measures of approximation on the space L of locally integrable functions on [0,∞) and on the field of Mikusiński operators.
9 schema:editor Na97ea2bbbc6f473fb52ab994567f3877
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N80b845a9f2394d978f5e37b979ce1d38
14 schema:name Estimations for the Solutions of Operator Linear Differential Equations
15 schema:pagination 267-277
16 schema:productId N4f139dfa82fe446a9591d2b0388c8f2a
17 N6b21864e139e43149696123988fdfc00
18 Ndc4b9b6bb1d24caba98841905f863e4f
19 schema:publisher Nd88e37b7f78e4a0f9691d64f1f238b49
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043610734
21 https://doi.org/10.1007/978-1-4613-1055-6_27
22 schema:sdDatePublished 2019-04-16T10:09
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N46d5268fb5a34374b1bd6451e51d3be1
25 schema:url https://link.springer.com/10.1007%2F978-1-4613-1055-6_27
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N29ff6703b23d4a30872f5cc523f525bd rdf:first Nfb576ab436674610899cc63b5306e47d
30 rdf:rest Nfc8f1821c3d14fbf8c00bf809fd0c108
31 N3b1d2c3819a14ffca2bf823756f25f79 schema:familyName Stanković
32 schema:givenName Bogoljub
33 rdf:type schema:Person
34 N46d5268fb5a34374b1bd6451e51d3be1 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N4f139dfa82fe446a9591d2b0388c8f2a schema:name dimensions_id
37 schema:value pub.1043610734
38 rdf:type schema:PropertyValue
39 N628b7d347d2f45ff818ee4124110ebda schema:familyName Pilipović
40 schema:givenName Stevan
41 rdf:type schema:Person
42 N675b998c80d948938f4f007979a6a9ad rdf:first Ncae1864f1a9a472bb8ed8fccefbab47e
43 rdf:rest rdf:nil
44 N6b21864e139e43149696123988fdfc00 schema:name readcube_id
45 schema:value cfbb75765c833d5a11ca732467c046a287aacd1e66394219d99775d3dafda021
46 rdf:type schema:PropertyValue
47 N6ccce9f8cea649e7a12c47fb4dcc2bea rdf:first N6e912f9c4679488ea095f200c38e47cb
48 rdf:rest rdf:nil
49 N6e912f9c4679488ea095f200c38e47cb schema:familyName Vladimirov
50 schema:givenName Vasilij S.
51 rdf:type schema:Person
52 N80b845a9f2394d978f5e37b979ce1d38 schema:isbn 978-1-4612-8312-6
53 978-1-4613-1055-6
54 schema:name Generalized Functions, Convergence Structures, and Their Applications
55 rdf:type schema:Book
56 N90c88675d9b54dd386e9fdc1f9d19cb4 schema:name Institute of Mathematics, University of Novi Sad, dr I. Đuričića 4, 21000, Novi Sad, Yugoslavia
57 rdf:type schema:Organization
58 Na97ea2bbbc6f473fb52ab994567f3877 rdf:first N3b1d2c3819a14ffca2bf823756f25f79
59 rdf:rest N29ff6703b23d4a30872f5cc523f525bd
60 Ncae1864f1a9a472bb8ed8fccefbab47e schema:affiliation N90c88675d9b54dd386e9fdc1f9d19cb4
61 schema:familyName Takači
62 schema:givenName Đurđica
63 rdf:type schema:Person
64 Ncc3e241a765c456dae85645c5aefc4ac schema:name Institute of Mathematics, University of Novi Sad, dr I. Đuričića 4, 21000, Novi Sad, Yugoslavia
65 rdf:type schema:Organization
66 Nd88e37b7f78e4a0f9691d64f1f238b49 schema:location Boston, MA
67 schema:name Springer US
68 rdf:type schema:Organisation
69 Ndc4b9b6bb1d24caba98841905f863e4f schema:name doi
70 schema:value 10.1007/978-1-4613-1055-6_27
71 rdf:type schema:PropertyValue
72 Nfa151905b916462498fe7a0a5a63e888 rdf:first sg:person.012354470173.10
73 rdf:rest N675b998c80d948938f4f007979a6a9ad
74 Nfb576ab436674610899cc63b5306e47d schema:familyName Pap
75 schema:givenName Endre
76 rdf:type schema:Person
77 Nfc8f1821c3d14fbf8c00bf809fd0c108 rdf:first N628b7d347d2f45ff818ee4124110ebda
78 rdf:rest N6ccce9f8cea649e7a12c47fb4dcc2bea
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
83 schema:name Pure Mathematics
84 rdf:type schema:DefinedTerm
85 sg:person.012354470173.10 schema:affiliation Ncc3e241a765c456dae85645c5aefc4ac
86 schema:familyName Pap
87 schema:givenName Endre
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10
89 rdf:type schema:Person
90 https://doi.org/10.2307/2373613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069900154
91 rdf:type schema:CreativeWork
92 https://doi.org/10.4064/sm-75-3-313-333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092013818
93 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...