Quantum Theory of Nondegenerate Four-Wave Mixing in Semiconductor Media View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1990

AUTHORS

A. E. Paul , M. Lindberg , S. An , M. Sargent , S. W. Koch

ABSTRACT

Many semiconductor materials exhibit large optical nonlinearities in the spectral regime of the fundamental absorption edge.1 Most of these nonlinearities rely on the interactions among the generated electron-hole excitations. Since the carrier-carrier intraband scattering processes establish quasi-thermal equilibrium on a sub-picosecond timescale, most theoretical studies deal only with the incoherent optical properties of semiconductors. However, effects like multi-wave mixing are phase sensitive processes which require a more elaborate treatment of the light-light interaction mediated by the incoherent medium. In this paper we present a theory of multi-wave mixing for a highly excited semiconductor. The theory is based on the fact that pulsation of the total carrier density can induce mixing since the carrier response time is of the order of nanoseconds, even if the intraband carrier-carrier scattering occurs in fractions of a picosecond. In our theory we concentrate on the population pulsations, simplifying or ignoring the many-body Coulomb effects as much as reasonably possible without having a completely unrealistic model. More... »

PAGES

877-881

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-0847-8_159

DOI

http://dx.doi.org/10.1007/978-1-4613-0847-8_159

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000110533


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Physics, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paul", 
        "givenName": "A. E.", 
        "id": "sg:person.011714540505.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011714540505.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lindberg", 
        "givenName": "M.", 
        "id": "sg:person.016626050663.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016626050663.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "An", 
        "givenName": "S.", 
        "id": "sg:person.010552115601.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552115601.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sargent", 
        "givenName": "M.", 
        "id": "sg:person.016044715770.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016044715770.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Physics, University of Arizona, 85721, Tucson, AZ, USA", 
            "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koch", 
        "givenName": "S. W.", 
        "id": "sg:person.016644550132.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016644550132.58"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1990", 
    "datePublishedReg": "1990-01-01", 
    "description": "Many semiconductor materials exhibit large optical nonlinearities in the spectral regime of the fundamental absorption edge.1 Most of these nonlinearities rely on the interactions among the generated electron-hole excitations. Since the carrier-carrier intraband scattering processes establish quasi-thermal equilibrium on a sub-picosecond timescale, most theoretical studies deal only with the incoherent optical properties of semiconductors. However, effects like multi-wave mixing are phase sensitive processes which require a more elaborate treatment of the light-light interaction mediated by the incoherent medium. In this paper we present a theory of multi-wave mixing for a highly excited semiconductor. The theory is based on the fact that pulsation of the total carrier density can induce mixing since the carrier response time is of the order of nanoseconds, even if the intraband carrier-carrier scattering occurs in fractions of a picosecond. In our theory we concentrate on the population pulsations, simplifying or ignoring the many-body Coulomb effects as much as reasonably possible without having a completely unrealistic model.", 
    "editor": [
      {
        "familyName": "Eberly", 
        "givenName": "Joseph H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Mandel", 
        "givenName": "Leonard", 
        "type": "Person"
      }, 
      {
        "familyName": "Wolf", 
        "givenName": "Emil", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-0847-8_159", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-8112-2", 
        "978-1-4613-0847-8"
      ], 
      "name": "Coherence and Quantum Optics VI", 
      "type": "Book"
    }, 
    "keywords": [
      "light-light interaction", 
      "large optical nonlinearity", 
      "body Coulomb effects", 
      "sub-picosecond timescale", 
      "electron-hole excitations", 
      "multi-wave mixing", 
      "four-wave mixing", 
      "fundamental absorption edge", 
      "total carrier density", 
      "quasi-thermal equilibrium", 
      "order of nanoseconds", 
      "phase-sensitive process", 
      "excited semiconductors", 
      "optical nonlinearity", 
      "population pulsations", 
      "spectral regime", 
      "quantum theory", 
      "absorption edge", 
      "scattering process", 
      "optical properties", 
      "Coulomb effects", 
      "scattering occurs", 
      "semiconductor medium", 
      "carrier density", 
      "semiconductor materials", 
      "Most theoretical studies", 
      "semiconductors", 
      "theoretical study", 
      "pulsations", 
      "elaborate treatment", 
      "picoseconds", 
      "nonlinearity", 
      "nanoseconds", 
      "excitation", 
      "mixing", 
      "nondegenerate", 
      "theory", 
      "unrealistic models", 
      "timescales", 
      "regime", 
      "response time", 
      "interaction", 
      "density", 
      "edge", 
      "properties", 
      "sensitive process", 
      "equilibrium", 
      "medium", 
      "materials", 
      "process", 
      "effect", 
      "order", 
      "fraction", 
      "occurs", 
      "model", 
      "time", 
      "fact", 
      "paper", 
      "study", 
      "treatment"
    ], 
    "name": "Quantum Theory of Nondegenerate Four-Wave Mixing in Semiconductor Media", 
    "pagination": "877-881", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000110533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-0847-8_159"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-0847-8_159", 
      "https://app.dimensions.ai/details/publication/pub.1000110533"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_418.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4613-0847-8_159"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0847-8_159'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0847-8_159'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0847-8_159'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0847-8_159'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      23 PREDICATES      86 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-0847-8_159 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Na5cec01ca3c14b059e7bc01a2c4ffb7c
4 schema:datePublished 1990
5 schema:datePublishedReg 1990-01-01
6 schema:description Many semiconductor materials exhibit large optical nonlinearities in the spectral regime of the fundamental absorption edge.1 Most of these nonlinearities rely on the interactions among the generated electron-hole excitations. Since the carrier-carrier intraband scattering processes establish quasi-thermal equilibrium on a sub-picosecond timescale, most theoretical studies deal only with the incoherent optical properties of semiconductors. However, effects like multi-wave mixing are phase sensitive processes which require a more elaborate treatment of the light-light interaction mediated by the incoherent medium. In this paper we present a theory of multi-wave mixing for a highly excited semiconductor. The theory is based on the fact that pulsation of the total carrier density can induce mixing since the carrier response time is of the order of nanoseconds, even if the intraband carrier-carrier scattering occurs in fractions of a picosecond. In our theory we concentrate on the population pulsations, simplifying or ignoring the many-body Coulomb effects as much as reasonably possible without having a completely unrealistic model.
7 schema:editor N85c3655fedfd43d085397bcfceb8a82b
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc25339ca18d944d59072e1fac5fc5424
12 schema:keywords Coulomb effects
13 Most theoretical studies
14 absorption edge
15 body Coulomb effects
16 carrier density
17 density
18 edge
19 effect
20 elaborate treatment
21 electron-hole excitations
22 equilibrium
23 excitation
24 excited semiconductors
25 fact
26 four-wave mixing
27 fraction
28 fundamental absorption edge
29 interaction
30 large optical nonlinearity
31 light-light interaction
32 materials
33 medium
34 mixing
35 model
36 multi-wave mixing
37 nanoseconds
38 nondegenerate
39 nonlinearity
40 occurs
41 optical nonlinearity
42 optical properties
43 order
44 order of nanoseconds
45 paper
46 phase-sensitive process
47 picoseconds
48 population pulsations
49 process
50 properties
51 pulsations
52 quantum theory
53 quasi-thermal equilibrium
54 regime
55 response time
56 scattering occurs
57 scattering process
58 semiconductor materials
59 semiconductor medium
60 semiconductors
61 sensitive process
62 spectral regime
63 study
64 sub-picosecond timescale
65 theoretical study
66 theory
67 time
68 timescales
69 total carrier density
70 treatment
71 unrealistic models
72 schema:name Quantum Theory of Nondegenerate Four-Wave Mixing in Semiconductor Media
73 schema:pagination 877-881
74 schema:productId N5b4765bfeeec45868a8d5fc24f124187
75 Ncc33fb8403fa4b1fbe272768a8c244a5
76 schema:publisher N0a4e606699ab4a1a950a62ea8bd1817b
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000110533
78 https://doi.org/10.1007/978-1-4613-0847-8_159
79 schema:sdDatePublished 2022-06-01T22:35
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N5f1bd96568c742e290a221f3b924114f
82 schema:url https://doi.org/10.1007/978-1-4613-0847-8_159
83 sgo:license sg:explorer/license/
84 sgo:sdDataset chapters
85 rdf:type schema:Chapter
86 N0a4e606699ab4a1a950a62ea8bd1817b schema:name Springer Nature
87 rdf:type schema:Organisation
88 N187d9ede02e34d0e9eda9a362c045a96 rdf:first N4d81f6153ba043dc93dafc5acde316f4
89 rdf:rest rdf:nil
90 N4d81f6153ba043dc93dafc5acde316f4 schema:familyName Wolf
91 schema:givenName Emil
92 rdf:type schema:Person
93 N51ef64fe20a944b8832c37f1fe894bf8 rdf:first Nbe008fc35c4e4034a66ef443a8aa0d62
94 rdf:rest N187d9ede02e34d0e9eda9a362c045a96
95 N5b4765bfeeec45868a8d5fc24f124187 schema:name dimensions_id
96 schema:value pub.1000110533
97 rdf:type schema:PropertyValue
98 N5f1bd96568c742e290a221f3b924114f schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N6e8a514bc0c346518b4452b92d71bd4b rdf:first sg:person.010552115601.86
101 rdf:rest Na76fb59c29d64a3b95ec4fd4958e61c4
102 N85c3655fedfd43d085397bcfceb8a82b rdf:first Na8f5abb2dd2b4c59b00df868dd44af5a
103 rdf:rest N51ef64fe20a944b8832c37f1fe894bf8
104 N9d59cd813f174e0b8576bb4dea50fb29 rdf:first sg:person.016626050663.56
105 rdf:rest N6e8a514bc0c346518b4452b92d71bd4b
106 Na5cec01ca3c14b059e7bc01a2c4ffb7c rdf:first sg:person.011714540505.60
107 rdf:rest N9d59cd813f174e0b8576bb4dea50fb29
108 Na76fb59c29d64a3b95ec4fd4958e61c4 rdf:first sg:person.016044715770.57
109 rdf:rest Nb766894f8a664a8f98ce4704718b3f9b
110 Na8f5abb2dd2b4c59b00df868dd44af5a schema:familyName Eberly
111 schema:givenName Joseph H.
112 rdf:type schema:Person
113 Nb766894f8a664a8f98ce4704718b3f9b rdf:first sg:person.016644550132.58
114 rdf:rest rdf:nil
115 Nbe008fc35c4e4034a66ef443a8aa0d62 schema:familyName Mandel
116 schema:givenName Leonard
117 rdf:type schema:Person
118 Nc25339ca18d944d59072e1fac5fc5424 schema:isbn 978-1-4612-8112-2
119 978-1-4613-0847-8
120 schema:name Coherence and Quantum Optics VI
121 rdf:type schema:Book
122 Ncc33fb8403fa4b1fbe272768a8c244a5 schema:name doi
123 schema:value 10.1007/978-1-4613-0847-8_159
124 rdf:type schema:PropertyValue
125 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
126 schema:name Physical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
129 schema:name Other Physical Sciences
130 rdf:type schema:DefinedTerm
131 sg:person.010552115601.86 schema:affiliation grid-institutes:grid.134563.6
132 schema:familyName An
133 schema:givenName S.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552115601.86
135 rdf:type schema:Person
136 sg:person.011714540505.60 schema:affiliation grid-institutes:grid.134563.6
137 schema:familyName Paul
138 schema:givenName A. E.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011714540505.60
140 rdf:type schema:Person
141 sg:person.016044715770.57 schema:affiliation grid-institutes:grid.134563.6
142 schema:familyName Sargent
143 schema:givenName M.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016044715770.57
145 rdf:type schema:Person
146 sg:person.016626050663.56 schema:affiliation grid-institutes:grid.134563.6
147 schema:familyName Lindberg
148 schema:givenName M.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016626050663.56
150 rdf:type schema:Person
151 sg:person.016644550132.58 schema:affiliation grid-institutes:grid.134563.6
152 schema:familyName Koch
153 schema:givenName S. W.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016644550132.58
155 rdf:type schema:Person
156 grid-institutes:grid.134563.6 schema:alternateName Department of Physics, University of Arizona, 85721, Tucson, AZ, USA
157 Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA
158 schema:name Department of Physics, University of Arizona, 85721, Tucson, AZ, USA
159 Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...