Ontology type: schema:Chapter
1990
AUTHORSA. E. Paul , M. Lindberg , S. An , M. Sargent , S. W. Koch
ABSTRACTMany semiconductor materials exhibit large optical nonlinearities in the spectral regime of the fundamental absorption edge.1 Most of these nonlinearities rely on the interactions among the generated electron-hole excitations. Since the carrier-carrier intraband scattering processes establish quasi-thermal equilibrium on a sub-picosecond timescale, most theoretical studies deal only with the incoherent optical properties of semiconductors. However, effects like multi-wave mixing are phase sensitive processes which require a more elaborate treatment of the light-light interaction mediated by the incoherent medium. In this paper we present a theory of multi-wave mixing for a highly excited semiconductor. The theory is based on the fact that pulsation of the total carrier density can induce mixing since the carrier response time is of the order of nanoseconds, even if the intraband carrier-carrier scattering occurs in fractions of a picosecond. In our theory we concentrate on the population pulsations, simplifying or ignoring the many-body Coulomb effects as much as reasonably possible without having a completely unrealistic model. More... »
PAGES877-881
Coherence and Quantum Optics VI
ISBN
978-1-4612-8112-2
978-1-4613-0847-8
http://scigraph.springernature.com/pub.10.1007/978-1-4613-0847-8_159
DOIhttp://dx.doi.org/10.1007/978-1-4613-0847-8_159
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1000110533
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics, University of Arizona, 85721, Tucson, AZ, USA",
"id": "http://www.grid.ac/institutes/grid.134563.6",
"name": [
"Department of Physics, University of Arizona, 85721, Tucson, AZ, USA"
],
"type": "Organization"
},
"familyName": "Paul",
"givenName": "A. E.",
"id": "sg:person.011714540505.60",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011714540505.60"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA",
"id": "http://www.grid.ac/institutes/grid.134563.6",
"name": [
"Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
],
"type": "Organization"
},
"familyName": "Lindberg",
"givenName": "M.",
"id": "sg:person.016626050663.56",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016626050663.56"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA",
"id": "http://www.grid.ac/institutes/grid.134563.6",
"name": [
"Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
],
"type": "Organization"
},
"familyName": "An",
"givenName": "S.",
"id": "sg:person.010552115601.86",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552115601.86"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA",
"id": "http://www.grid.ac/institutes/grid.134563.6",
"name": [
"Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
],
"type": "Organization"
},
"familyName": "Sargent",
"givenName": "M.",
"id": "sg:person.016044715770.57",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016044715770.57"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA",
"id": "http://www.grid.ac/institutes/grid.134563.6",
"name": [
"Department of Physics, University of Arizona, 85721, Tucson, AZ, USA",
"Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA"
],
"type": "Organization"
},
"familyName": "Koch",
"givenName": "S. W.",
"id": "sg:person.016644550132.58",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016644550132.58"
],
"type": "Person"
}
],
"datePublished": "1990",
"datePublishedReg": "1990-01-01",
"description": "Many semiconductor materials exhibit large optical nonlinearities in the spectral regime of the fundamental absorption edge.1 Most of these nonlinearities rely on the interactions among the generated electron-hole excitations. Since the carrier-carrier intraband scattering processes establish quasi-thermal equilibrium on a sub-picosecond timescale, most theoretical studies deal only with the incoherent optical properties of semiconductors. However, effects like multi-wave mixing are phase sensitive processes which require a more elaborate treatment of the light-light interaction mediated by the incoherent medium. In this paper we present a theory of multi-wave mixing for a highly excited semiconductor. The theory is based on the fact that pulsation of the total carrier density can induce mixing since the carrier response time is of the order of nanoseconds, even if the intraband carrier-carrier scattering occurs in fractions of a picosecond. In our theory we concentrate on the population pulsations, simplifying or ignoring the many-body Coulomb effects as much as reasonably possible without having a completely unrealistic model.",
"editor": [
{
"familyName": "Eberly",
"givenName": "Joseph H.",
"type": "Person"
},
{
"familyName": "Mandel",
"givenName": "Leonard",
"type": "Person"
},
{
"familyName": "Wolf",
"givenName": "Emil",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-4613-0847-8_159",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-1-4612-8112-2",
"978-1-4613-0847-8"
],
"name": "Coherence and Quantum Optics VI",
"type": "Book"
},
"keywords": [
"light-light interaction",
"large optical nonlinearity",
"body Coulomb effects",
"sub-picosecond timescale",
"electron-hole excitations",
"multi-wave mixing",
"four-wave mixing",
"fundamental absorption edge",
"total carrier density",
"quasi-thermal equilibrium",
"order of nanoseconds",
"phase-sensitive process",
"excited semiconductors",
"optical nonlinearity",
"population pulsations",
"spectral regime",
"quantum theory",
"absorption edge",
"scattering process",
"optical properties",
"Coulomb effects",
"scattering occurs",
"semiconductor medium",
"carrier density",
"semiconductor materials",
"Most theoretical studies",
"semiconductors",
"theoretical study",
"pulsations",
"elaborate treatment",
"picoseconds",
"nonlinearity",
"nanoseconds",
"excitation",
"mixing",
"nondegenerate",
"theory",
"unrealistic models",
"timescales",
"regime",
"response time",
"interaction",
"density",
"edge",
"properties",
"sensitive process",
"equilibrium",
"medium",
"materials",
"process",
"effect",
"order",
"fraction",
"occurs",
"model",
"time",
"fact",
"paper",
"study",
"treatment"
],
"name": "Quantum Theory of Nondegenerate Four-Wave Mixing in Semiconductor Media",
"pagination": "877-881",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1000110533"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-4613-0847-8_159"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-4613-0847-8_159",
"https://app.dimensions.ai/details/publication/pub.1000110533"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:35",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_418.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-1-4613-0847-8_159"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0847-8_159'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0847-8_159'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0847-8_159'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0847-8_159'
This table displays all metadata directly associated to this object as RDF triples.
160 TRIPLES
23 PREDICATES
86 URIs
79 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-1-4613-0847-8_159 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | Na5cec01ca3c14b059e7bc01a2c4ffb7c |
4 | ″ | schema:datePublished | 1990 |
5 | ″ | schema:datePublishedReg | 1990-01-01 |
6 | ″ | schema:description | Many semiconductor materials exhibit large optical nonlinearities in the spectral regime of the fundamental absorption edge.1 Most of these nonlinearities rely on the interactions among the generated electron-hole excitations. Since the carrier-carrier intraband scattering processes establish quasi-thermal equilibrium on a sub-picosecond timescale, most theoretical studies deal only with the incoherent optical properties of semiconductors. However, effects like multi-wave mixing are phase sensitive processes which require a more elaborate treatment of the light-light interaction mediated by the incoherent medium. In this paper we present a theory of multi-wave mixing for a highly excited semiconductor. The theory is based on the fact that pulsation of the total carrier density can induce mixing since the carrier response time is of the order of nanoseconds, even if the intraband carrier-carrier scattering occurs in fractions of a picosecond. In our theory we concentrate on the population pulsations, simplifying or ignoring the many-body Coulomb effects as much as reasonably possible without having a completely unrealistic model. |
7 | ″ | schema:editor | N85c3655fedfd43d085397bcfceb8a82b |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | Nc25339ca18d944d59072e1fac5fc5424 |
12 | ″ | schema:keywords | Coulomb effects |
13 | ″ | ″ | Most theoretical studies |
14 | ″ | ″ | absorption edge |
15 | ″ | ″ | body Coulomb effects |
16 | ″ | ″ | carrier density |
17 | ″ | ″ | density |
18 | ″ | ″ | edge |
19 | ″ | ″ | effect |
20 | ″ | ″ | elaborate treatment |
21 | ″ | ″ | electron-hole excitations |
22 | ″ | ″ | equilibrium |
23 | ″ | ″ | excitation |
24 | ″ | ″ | excited semiconductors |
25 | ″ | ″ | fact |
26 | ″ | ″ | four-wave mixing |
27 | ″ | ″ | fraction |
28 | ″ | ″ | fundamental absorption edge |
29 | ″ | ″ | interaction |
30 | ″ | ″ | large optical nonlinearity |
31 | ″ | ″ | light-light interaction |
32 | ″ | ″ | materials |
33 | ″ | ″ | medium |
34 | ″ | ″ | mixing |
35 | ″ | ″ | model |
36 | ″ | ″ | multi-wave mixing |
37 | ″ | ″ | nanoseconds |
38 | ″ | ″ | nondegenerate |
39 | ″ | ″ | nonlinearity |
40 | ″ | ″ | occurs |
41 | ″ | ″ | optical nonlinearity |
42 | ″ | ″ | optical properties |
43 | ″ | ″ | order |
44 | ″ | ″ | order of nanoseconds |
45 | ″ | ″ | paper |
46 | ″ | ″ | phase-sensitive process |
47 | ″ | ″ | picoseconds |
48 | ″ | ″ | population pulsations |
49 | ″ | ″ | process |
50 | ″ | ″ | properties |
51 | ″ | ″ | pulsations |
52 | ″ | ″ | quantum theory |
53 | ″ | ″ | quasi-thermal equilibrium |
54 | ″ | ″ | regime |
55 | ″ | ″ | response time |
56 | ″ | ″ | scattering occurs |
57 | ″ | ″ | scattering process |
58 | ″ | ″ | semiconductor materials |
59 | ″ | ″ | semiconductor medium |
60 | ″ | ″ | semiconductors |
61 | ″ | ″ | sensitive process |
62 | ″ | ″ | spectral regime |
63 | ″ | ″ | study |
64 | ″ | ″ | sub-picosecond timescale |
65 | ″ | ″ | theoretical study |
66 | ″ | ″ | theory |
67 | ″ | ″ | time |
68 | ″ | ″ | timescales |
69 | ″ | ″ | total carrier density |
70 | ″ | ″ | treatment |
71 | ″ | ″ | unrealistic models |
72 | ″ | schema:name | Quantum Theory of Nondegenerate Four-Wave Mixing in Semiconductor Media |
73 | ″ | schema:pagination | 877-881 |
74 | ″ | schema:productId | N5b4765bfeeec45868a8d5fc24f124187 |
75 | ″ | ″ | Ncc33fb8403fa4b1fbe272768a8c244a5 |
76 | ″ | schema:publisher | N0a4e606699ab4a1a950a62ea8bd1817b |
77 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000110533 |
78 | ″ | ″ | https://doi.org/10.1007/978-1-4613-0847-8_159 |
79 | ″ | schema:sdDatePublished | 2022-06-01T22:35 |
80 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
81 | ″ | schema:sdPublisher | N5f1bd96568c742e290a221f3b924114f |
82 | ″ | schema:url | https://doi.org/10.1007/978-1-4613-0847-8_159 |
83 | ″ | sgo:license | sg:explorer/license/ |
84 | ″ | sgo:sdDataset | chapters |
85 | ″ | rdf:type | schema:Chapter |
86 | N0a4e606699ab4a1a950a62ea8bd1817b | schema:name | Springer Nature |
87 | ″ | rdf:type | schema:Organisation |
88 | N187d9ede02e34d0e9eda9a362c045a96 | rdf:first | N4d81f6153ba043dc93dafc5acde316f4 |
89 | ″ | rdf:rest | rdf:nil |
90 | N4d81f6153ba043dc93dafc5acde316f4 | schema:familyName | Wolf |
91 | ″ | schema:givenName | Emil |
92 | ″ | rdf:type | schema:Person |
93 | N51ef64fe20a944b8832c37f1fe894bf8 | rdf:first | Nbe008fc35c4e4034a66ef443a8aa0d62 |
94 | ″ | rdf:rest | N187d9ede02e34d0e9eda9a362c045a96 |
95 | N5b4765bfeeec45868a8d5fc24f124187 | schema:name | dimensions_id |
96 | ″ | schema:value | pub.1000110533 |
97 | ″ | rdf:type | schema:PropertyValue |
98 | N5f1bd96568c742e290a221f3b924114f | schema:name | Springer Nature - SN SciGraph project |
99 | ″ | rdf:type | schema:Organization |
100 | N6e8a514bc0c346518b4452b92d71bd4b | rdf:first | sg:person.010552115601.86 |
101 | ″ | rdf:rest | Na76fb59c29d64a3b95ec4fd4958e61c4 |
102 | N85c3655fedfd43d085397bcfceb8a82b | rdf:first | Na8f5abb2dd2b4c59b00df868dd44af5a |
103 | ″ | rdf:rest | N51ef64fe20a944b8832c37f1fe894bf8 |
104 | N9d59cd813f174e0b8576bb4dea50fb29 | rdf:first | sg:person.016626050663.56 |
105 | ″ | rdf:rest | N6e8a514bc0c346518b4452b92d71bd4b |
106 | Na5cec01ca3c14b059e7bc01a2c4ffb7c | rdf:first | sg:person.011714540505.60 |
107 | ″ | rdf:rest | N9d59cd813f174e0b8576bb4dea50fb29 |
108 | Na76fb59c29d64a3b95ec4fd4958e61c4 | rdf:first | sg:person.016044715770.57 |
109 | ″ | rdf:rest | Nb766894f8a664a8f98ce4704718b3f9b |
110 | Na8f5abb2dd2b4c59b00df868dd44af5a | schema:familyName | Eberly |
111 | ″ | schema:givenName | Joseph H. |
112 | ″ | rdf:type | schema:Person |
113 | Nb766894f8a664a8f98ce4704718b3f9b | rdf:first | sg:person.016644550132.58 |
114 | ″ | rdf:rest | rdf:nil |
115 | Nbe008fc35c4e4034a66ef443a8aa0d62 | schema:familyName | Mandel |
116 | ″ | schema:givenName | Leonard |
117 | ″ | rdf:type | schema:Person |
118 | Nc25339ca18d944d59072e1fac5fc5424 | schema:isbn | 978-1-4612-8112-2 |
119 | ″ | ″ | 978-1-4613-0847-8 |
120 | ″ | schema:name | Coherence and Quantum Optics VI |
121 | ″ | rdf:type | schema:Book |
122 | Ncc33fb8403fa4b1fbe272768a8c244a5 | schema:name | doi |
123 | ″ | schema:value | 10.1007/978-1-4613-0847-8_159 |
124 | ″ | rdf:type | schema:PropertyValue |
125 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
126 | ″ | schema:name | Physical Sciences |
127 | ″ | rdf:type | schema:DefinedTerm |
128 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
129 | ″ | schema:name | Other Physical Sciences |
130 | ″ | rdf:type | schema:DefinedTerm |
131 | sg:person.010552115601.86 | schema:affiliation | grid-institutes:grid.134563.6 |
132 | ″ | schema:familyName | An |
133 | ″ | schema:givenName | S. |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552115601.86 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.011714540505.60 | schema:affiliation | grid-institutes:grid.134563.6 |
137 | ″ | schema:familyName | Paul |
138 | ″ | schema:givenName | A. E. |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011714540505.60 |
140 | ″ | rdf:type | schema:Person |
141 | sg:person.016044715770.57 | schema:affiliation | grid-institutes:grid.134563.6 |
142 | ″ | schema:familyName | Sargent |
143 | ″ | schema:givenName | M. |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016044715770.57 |
145 | ″ | rdf:type | schema:Person |
146 | sg:person.016626050663.56 | schema:affiliation | grid-institutes:grid.134563.6 |
147 | ″ | schema:familyName | Lindberg |
148 | ″ | schema:givenName | M. |
149 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016626050663.56 |
150 | ″ | rdf:type | schema:Person |
151 | sg:person.016644550132.58 | schema:affiliation | grid-institutes:grid.134563.6 |
152 | ″ | schema:familyName | Koch |
153 | ″ | schema:givenName | S. W. |
154 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016644550132.58 |
155 | ″ | rdf:type | schema:Person |
156 | grid-institutes:grid.134563.6 | schema:alternateName | Department of Physics, University of Arizona, 85721, Tucson, AZ, USA |
157 | ″ | ″ | Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA |
158 | ″ | schema:name | Department of Physics, University of Arizona, 85721, Tucson, AZ, USA |
159 | ″ | ″ | Optical Sciences Center, University of Arizona, 85721, Tucson, AZ, USA |
160 | ″ | rdf:type | schema:Organization |