Localised and Distributed Source Solutions for the Biomagnetic Inverse Problem I View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1989

AUTHORS

C. J. S. Clarke , A. A. Ioannides , J. P. R. Bolton

ABSTRACT

Until recently, equivalent current dipole sources have been used almost universally to describe the biomagnetic signals generated by ionic currents in conducting body tissues but, as the performance of multichannel systems improves, clinical applications will emerge which require PET-like pictures demonstrating increased activity (or the absence of activity) in relation to normal background levels. A vital step in this direction is the development of a reliable, efficient and mathematically well-founded method of studying continuous source densities. A number of attempts to treat biomagnetic data in a model-independent way have been reported [1,2,3,4]Starting from maximum entropy arguments [5] we have developed a very general method of inversion. In a certain limit, our method reduces to that of reference [1] but, in general, it is more powerful in its ability to take account of prior information about the source space and the noise spectrum of the magnetometers. It is implemented within a comprehensive computing environment that can deal with a wide range of experimental geometries and accommodate discrete or continuous sources, including both ionic flows and magnetic dipoles. In this paper we provide an outline of the method and computing environment and we discuss two simple examples. A more detailed description of the method will be given elsewhere, but its application to 3D inversions and the analysis of real MEG data is given in the next paper [6]. More... »

PAGES

587-590

Book

TITLE

Advances in Biomagnetism

ISBN

978-1-4612-7876-4
978-1-4613-0581-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-0581-1_129

DOI

http://dx.doi.org/10.1007/978-1-4613-0581-1_129

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018055282


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Southampton", 
          "id": "https://www.grid.ac/institutes/grid.5491.9", 
          "name": [
            "Faculty of Mathematical Studies, University of Southampton, Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clarke", 
        "givenName": "C. J. S.", 
        "id": "sg:person.016447615435.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447615435.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Open University", 
          "id": "https://www.grid.ac/institutes/grid.10837.3d", 
          "name": [
            "Physics Department, The Open University, Milton Keynes, MK7 6AA, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ioannides", 
        "givenName": "A. A.", 
        "id": "sg:person.0600434417.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Open University", 
          "id": "https://www.grid.ac/institutes/grid.10837.3d", 
          "name": [
            "Physics Department, The Open University, Milton Keynes, MK7 6AA, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolton", 
        "givenName": "J. P. R.", 
        "id": "sg:person.012716626671.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012716626671.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0266-5611/5/4/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022370600"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989", 
    "datePublishedReg": "1989-01-01", 
    "description": "Until recently, equivalent current dipole sources have been used almost universally to describe the biomagnetic signals generated by ionic currents in conducting body tissues but, as the performance of multichannel systems improves, clinical applications will emerge which require PET-like pictures demonstrating increased activity (or the absence of activity) in relation to normal background levels. A vital step in this direction is the development of a reliable, efficient and mathematically well-founded method of studying continuous source densities. A number of attempts to treat biomagnetic data in a model-independent way have been reported [1,2,3,4]Starting from maximum entropy arguments [5] we have developed a very general method of inversion. In a certain limit, our method reduces to that of reference [1] but, in general, it is more powerful in its ability to take account of prior information about the source space and the noise spectrum of the magnetometers. It is implemented within a comprehensive computing environment that can deal with a wide range of experimental geometries and accommodate discrete or continuous sources, including both ionic flows and magnetic dipoles. In this paper we provide an outline of the method and computing environment and we discuss two simple examples. A more detailed description of the method will be given elsewhere, but its application to 3D inversions and the analysis of real MEG data is given in the next paper [6].", 
    "editor": [
      {
        "familyName": "Williamson", 
        "givenName": "Samuel J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hoke", 
        "givenName": "Manfried", 
        "type": "Person"
      }, 
      {
        "familyName": "Stroink", 
        "givenName": "Gerhard", 
        "type": "Person"
      }, 
      {
        "familyName": "Kotani", 
        "givenName": "Makoto", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-0581-1_129", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-7876-4", 
        "978-1-4613-0581-1"
      ], 
      "name": "Advances in Biomagnetism", 
      "type": "Book"
    }, 
    "name": "Localised and Distributed Source Solutions for the Biomagnetic Inverse Problem I", 
    "pagination": "587-590", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-0581-1_129"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "560717b03b134a72e2a4fe755685e44a8e5dd801e3d32a86edf1a4e25ffc41b7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018055282"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-0581-1_129", 
      "https://app.dimensions.ai/details/publication/pub.1018055282"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000254.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4613-0581-1_129"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0581-1_129'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0581-1_129'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0581-1_129'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0581-1_129'


 

This table displays all metadata directly associated to this object as RDF triples.

100 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-0581-1_129 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N0e018d082fa64aaeac2ea1d9d8656b00
4 schema:citation https://doi.org/10.1088/0266-5611/5/4/005
5 schema:datePublished 1989
6 schema:datePublishedReg 1989-01-01
7 schema:description Until recently, equivalent current dipole sources have been used almost universally to describe the biomagnetic signals generated by ionic currents in conducting body tissues but, as the performance of multichannel systems improves, clinical applications will emerge which require PET-like pictures demonstrating increased activity (or the absence of activity) in relation to normal background levels. A vital step in this direction is the development of a reliable, efficient and mathematically well-founded method of studying continuous source densities. A number of attempts to treat biomagnetic data in a model-independent way have been reported [1,2,3,4]Starting from maximum entropy arguments [5] we have developed a very general method of inversion. In a certain limit, our method reduces to that of reference [1] but, in general, it is more powerful in its ability to take account of prior information about the source space and the noise spectrum of the magnetometers. It is implemented within a comprehensive computing environment that can deal with a wide range of experimental geometries and accommodate discrete or continuous sources, including both ionic flows and magnetic dipoles. In this paper we provide an outline of the method and computing environment and we discuss two simple examples. A more detailed description of the method will be given elsewhere, but its application to 3D inversions and the analysis of real MEG data is given in the next paper [6].
8 schema:editor Nf832a8c15fa3475c8bc24cfc7db5b1c3
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N39c7b6a242de42f89f66eafb7dc5c483
13 schema:name Localised and Distributed Source Solutions for the Biomagnetic Inverse Problem I
14 schema:pagination 587-590
15 schema:productId N1f262305e89a424c92f90c6b40cd6b10
16 N47ce8b212eed4288b863dac20456f711
17 Nac63209cb36c43eb865292e758110184
18 schema:publisher N4b7495d3d7a64a018c99f72f081bb396
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018055282
20 https://doi.org/10.1007/978-1-4613-0581-1_129
21 schema:sdDatePublished 2019-04-15T18:10
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N0746cea66af84ae7b80204488c568da4
24 schema:url http://link.springer.com/10.1007/978-1-4613-0581-1_129
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N0746cea66af84ae7b80204488c568da4 schema:name Springer Nature - SN SciGraph project
29 rdf:type schema:Organization
30 N0e018d082fa64aaeac2ea1d9d8656b00 rdf:first sg:person.016447615435.95
31 rdf:rest N723657e113cc4f14a5d491c2deec9e54
32 N1f262305e89a424c92f90c6b40cd6b10 schema:name dimensions_id
33 schema:value pub.1018055282
34 rdf:type schema:PropertyValue
35 N39b5c47870f549e68728d74baca005b5 rdf:first Ndeb84d7e6a324e14afff4ffa21cc2087
36 rdf:rest rdf:nil
37 N39c7b6a242de42f89f66eafb7dc5c483 schema:isbn 978-1-4612-7876-4
38 978-1-4613-0581-1
39 schema:name Advances in Biomagnetism
40 rdf:type schema:Book
41 N47ce8b212eed4288b863dac20456f711 schema:name readcube_id
42 schema:value 560717b03b134a72e2a4fe755685e44a8e5dd801e3d32a86edf1a4e25ffc41b7
43 rdf:type schema:PropertyValue
44 N4b7495d3d7a64a018c99f72f081bb396 schema:location Boston, MA
45 schema:name Springer US
46 rdf:type schema:Organisation
47 N5dd1dd9d71a84aa1b8c96d348852cb99 schema:familyName Stroink
48 schema:givenName Gerhard
49 rdf:type schema:Person
50 N5e1cd59c46c742df9fd653566d6b69cb rdf:first sg:person.012716626671.00
51 rdf:rest rdf:nil
52 N723657e113cc4f14a5d491c2deec9e54 rdf:first sg:person.0600434417.84
53 rdf:rest N5e1cd59c46c742df9fd653566d6b69cb
54 N743fc69568c946fb88e3344c1e341afb schema:familyName Williamson
55 schema:givenName Samuel J.
56 rdf:type schema:Person
57 Nac63209cb36c43eb865292e758110184 schema:name doi
58 schema:value 10.1007/978-1-4613-0581-1_129
59 rdf:type schema:PropertyValue
60 Nbfd5a12ab57f4d8994551b408332bbcb rdf:first N5dd1dd9d71a84aa1b8c96d348852cb99
61 rdf:rest N39b5c47870f549e68728d74baca005b5
62 Nd2966aaa3d294f6b9456a73ecca91546 schema:familyName Hoke
63 schema:givenName Manfried
64 rdf:type schema:Person
65 Ndeb84d7e6a324e14afff4ffa21cc2087 schema:familyName Kotani
66 schema:givenName Makoto
67 rdf:type schema:Person
68 Ne947463de0ea443890d4a8117140573b rdf:first Nd2966aaa3d294f6b9456a73ecca91546
69 rdf:rest Nbfd5a12ab57f4d8994551b408332bbcb
70 Nf832a8c15fa3475c8bc24cfc7db5b1c3 rdf:first N743fc69568c946fb88e3344c1e341afb
71 rdf:rest Ne947463de0ea443890d4a8117140573b
72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
73 schema:name Mathematical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
76 schema:name Numerical and Computational Mathematics
77 rdf:type schema:DefinedTerm
78 sg:person.012716626671.00 schema:affiliation https://www.grid.ac/institutes/grid.10837.3d
79 schema:familyName Bolton
80 schema:givenName J. P. R.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012716626671.00
82 rdf:type schema:Person
83 sg:person.016447615435.95 schema:affiliation https://www.grid.ac/institutes/grid.5491.9
84 schema:familyName Clarke
85 schema:givenName C. J. S.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016447615435.95
87 rdf:type schema:Person
88 sg:person.0600434417.84 schema:affiliation https://www.grid.ac/institutes/grid.10837.3d
89 schema:familyName Ioannides
90 schema:givenName A. A.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600434417.84
92 rdf:type schema:Person
93 https://doi.org/10.1088/0266-5611/5/4/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022370600
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.10837.3d schema:alternateName The Open University
96 schema:name Physics Department, The Open University, Milton Keynes, MK7 6AA, UK
97 rdf:type schema:Organization
98 https://www.grid.ac/institutes/grid.5491.9 schema:alternateName University of Southampton
99 schema:name Faculty of Mathematical Studies, University of Southampton, Southampton, UK
100 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...