Fundamentals Of Dendritic Growth View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1989

AUTHORS

M. E. Glicksman

ABSTRACT

Dendritic growth is perhaps the most common form of solidification especially in metals and other systems that freeze with relatively low entropies of transformation. Dendritic or branched growth in alloys generates microsegregation as well as other internal defects in castings, ingots, and weldments. More subtle effects introduced by the complex dendritic microstructure in solidified materials include crystallographic texturing, hot cracking, suboptimal toughness, and reduced corrosion resistance. Moreover, the dendritic microstructure and its effects may be modified by subsequent heat treatments, but they are seldom fully “erased”. As such, the understanding and control of dendritic growth in solidification processing is crucial in order to achieve specific material properties in final products. More... »

PAGES

167-183

Book

TITLE

Crystal Growth in Science and Technology

ISBN

978-1-4612-7861-0
978-1-4613-0549-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-0549-1_9

DOI

http://dx.doi.org/10.1007/978-1-4613-0549-1_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008913702


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Materials Engineering Department, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Materials Engineering Department, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glicksman", 
        "givenName": "M. E.", 
        "id": "sg:person.010720014261.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1989", 
    "datePublishedReg": "1989-01-01", 
    "description": "Dendritic growth is perhaps the most common form of solidification especially in metals and other systems that freeze with relatively low entropies of transformation. Dendritic or branched growth in alloys generates microsegregation as well as other internal defects in castings, ingots, and weldments. More subtle effects introduced by the complex dendritic microstructure in solidified materials include crystallographic texturing, hot cracking, suboptimal toughness, and reduced corrosion resistance. Moreover, the dendritic microstructure and its effects may be modified by subsequent heat treatments, but they are seldom fully \u201cerased\u201d. As such, the understanding and control of dendritic growth in solidification processing is crucial in order to achieve specific material properties in final products.", 
    "editor": [
      {
        "familyName": "Arend", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hulliger", 
        "givenName": "J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-0549-1_9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-7861-0", 
        "978-1-4613-0549-1"
      ], 
      "name": "Crystal Growth in Science and Technology", 
      "type": "Book"
    }, 
    "keywords": [
      "dendritic microstructure", 
      "subsequent heat treatment", 
      "specific material properties", 
      "hot cracking", 
      "corrosion resistance", 
      "solidification processing", 
      "crystallographic texturing", 
      "dendritic growth", 
      "material properties", 
      "internal defects", 
      "heat treatment", 
      "microstructure", 
      "final product", 
      "weldments", 
      "branched growth", 
      "toughness", 
      "cracking", 
      "alloy", 
      "ingots", 
      "casting", 
      "texturing", 
      "solidification", 
      "microsegregation", 
      "materials", 
      "metals", 
      "properties", 
      "processing", 
      "fundamentals", 
      "resistance", 
      "system", 
      "effect", 
      "low entropy", 
      "order", 
      "defects", 
      "growth", 
      "products", 
      "control", 
      "transformation", 
      "entropy", 
      "form", 
      "subtle effects", 
      "understanding", 
      "treatment", 
      "common form"
    ], 
    "name": "Fundamentals Of Dendritic Growth", 
    "pagination": "167-183", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008913702"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-0549-1_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-0549-1_9", 
      "https://app.dimensions.ai/details/publication/pub.1008913702"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-06-01T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_195.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4613-0549-1_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0549-1_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0549-1_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0549-1_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0549-1_9'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      23 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-0549-1_9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N090ff031496c4eb1a3a00ab90af1b8f6
4 schema:datePublished 1989
5 schema:datePublishedReg 1989-01-01
6 schema:description Dendritic growth is perhaps the most common form of solidification especially in metals and other systems that freeze with relatively low entropies of transformation. Dendritic or branched growth in alloys generates microsegregation as well as other internal defects in castings, ingots, and weldments. More subtle effects introduced by the complex dendritic microstructure in solidified materials include crystallographic texturing, hot cracking, suboptimal toughness, and reduced corrosion resistance. Moreover, the dendritic microstructure and its effects may be modified by subsequent heat treatments, but they are seldom fully “erased”. As such, the understanding and control of dendritic growth in solidification processing is crucial in order to achieve specific material properties in final products.
7 schema:editor N3c6aa02e06224d98ab731a64e5acbc10
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N9fb59632754c4d3482941389ee216943
12 schema:keywords alloy
13 branched growth
14 casting
15 common form
16 control
17 corrosion resistance
18 cracking
19 crystallographic texturing
20 defects
21 dendritic growth
22 dendritic microstructure
23 effect
24 entropy
25 final product
26 form
27 fundamentals
28 growth
29 heat treatment
30 hot cracking
31 ingots
32 internal defects
33 low entropy
34 material properties
35 materials
36 metals
37 microsegregation
38 microstructure
39 order
40 processing
41 products
42 properties
43 resistance
44 solidification
45 solidification processing
46 specific material properties
47 subsequent heat treatment
48 subtle effects
49 system
50 texturing
51 toughness
52 transformation
53 treatment
54 understanding
55 weldments
56 schema:name Fundamentals Of Dendritic Growth
57 schema:pagination 167-183
58 schema:productId N06aaa28759cc4fae850e5a7c4fc1f21f
59 N224c50faa0b940818a8d03ac36724a60
60 schema:publisher Ncb7b9cef1d684853aff17ad3bd630cae
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008913702
62 https://doi.org/10.1007/978-1-4613-0549-1_9
63 schema:sdDatePublished 2022-06-01T22:29
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N51dcc61948e44bc59dacf5315c319e76
66 schema:url https://doi.org/10.1007/978-1-4613-0549-1_9
67 sgo:license sg:explorer/license/
68 sgo:sdDataset chapters
69 rdf:type schema:Chapter
70 N06aaa28759cc4fae850e5a7c4fc1f21f schema:name doi
71 schema:value 10.1007/978-1-4613-0549-1_9
72 rdf:type schema:PropertyValue
73 N090ff031496c4eb1a3a00ab90af1b8f6 rdf:first sg:person.010720014261.43
74 rdf:rest rdf:nil
75 N224c50faa0b940818a8d03ac36724a60 schema:name dimensions_id
76 schema:value pub.1008913702
77 rdf:type schema:PropertyValue
78 N27be74f951254fa0b1d9eed1c36a482f schema:familyName Arend
79 schema:givenName H.
80 rdf:type schema:Person
81 N3c6aa02e06224d98ab731a64e5acbc10 rdf:first N27be74f951254fa0b1d9eed1c36a482f
82 rdf:rest N9418105551b546028a87f48776c91ff0
83 N51dcc61948e44bc59dacf5315c319e76 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N6e31d34d444840a2a23fba20c8e7deaa schema:familyName Hulliger
86 schema:givenName J.
87 rdf:type schema:Person
88 N9418105551b546028a87f48776c91ff0 rdf:first N6e31d34d444840a2a23fba20c8e7deaa
89 rdf:rest rdf:nil
90 N9fb59632754c4d3482941389ee216943 schema:isbn 978-1-4612-7861-0
91 978-1-4613-0549-1
92 schema:name Crystal Growth in Science and Technology
93 rdf:type schema:Book
94 Ncb7b9cef1d684853aff17ad3bd630cae schema:name Springer Nature
95 rdf:type schema:Organisation
96 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
97 schema:name Engineering
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
100 schema:name Materials Engineering
101 rdf:type schema:DefinedTerm
102 sg:person.010720014261.43 schema:affiliation grid-institutes:grid.33647.35
103 schema:familyName Glicksman
104 schema:givenName M. E.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43
106 rdf:type schema:Person
107 grid-institutes:grid.33647.35 schema:alternateName Materials Engineering Department, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
108 schema:name Materials Engineering Department, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...