1989
AUTHORS ABSTRACTDendritic growth is perhaps the most common form of solidification especially in metals and other systems that freeze with relatively low entropies of transformation. Dendritic or branched growth in alloys generates microsegregation as well as other internal defects in castings, ingots, and weldments. More subtle effects introduced by the complex dendritic microstructure in solidified materials include crystallographic texturing, hot cracking, suboptimal toughness, and reduced corrosion resistance. Moreover, the dendritic microstructure and its effects may be modified by subsequent heat treatments, but they are seldom fully “erased”. As such, the understanding and control of dendritic growth in solidification processing is crucial in order to achieve specific material properties in final products. More... »
PAGES167-183
Crystal Growth in Science and Technology
ISBN
978-1-4612-7861-0
978-1-4613-0549-1
http://scigraph.springernature.com/pub.10.1007/978-1-4613-0549-1_9
DOIhttp://dx.doi.org/10.1007/978-1-4613-0549-1_9
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1008913702
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Materials Engineering Department, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA",
"id": "http://www.grid.ac/institutes/grid.33647.35",
"name": [
"Materials Engineering Department, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA"
],
"type": "Organization"
},
"familyName": "Glicksman",
"givenName": "M. E.",
"id": "sg:person.010720014261.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43"
],
"type": "Person"
}
],
"datePublished": "1989",
"datePublishedReg": "1989-01-01",
"description": "Dendritic growth is perhaps the most common form of solidification especially in metals and other systems that freeze with relatively low entropies of transformation. Dendritic or branched growth in alloys generates microsegregation as well as other internal defects in castings, ingots, and weldments. More subtle effects introduced by the complex dendritic microstructure in solidified materials include crystallographic texturing, hot cracking, suboptimal toughness, and reduced corrosion resistance. Moreover, the dendritic microstructure and its effects may be modified by subsequent heat treatments, but they are seldom fully \u201cerased\u201d. As such, the understanding and control of dendritic growth in solidification processing is crucial in order to achieve specific material properties in final products.",
"editor": [
{
"familyName": "Arend",
"givenName": "H.",
"type": "Person"
},
{
"familyName": "Hulliger",
"givenName": "J.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-1-4613-0549-1_9",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-1-4612-7861-0",
"978-1-4613-0549-1"
],
"name": "Crystal Growth in Science and Technology",
"type": "Book"
},
"keywords": [
"dendritic microstructure",
"subsequent heat treatment",
"specific material properties",
"hot cracking",
"corrosion resistance",
"solidification processing",
"crystallographic texturing",
"dendritic growth",
"material properties",
"internal defects",
"heat treatment",
"microstructure",
"final product",
"weldments",
"branched growth",
"toughness",
"cracking",
"alloy",
"ingots",
"casting",
"texturing",
"solidification",
"microsegregation",
"materials",
"metals",
"properties",
"processing",
"fundamentals",
"resistance",
"system",
"effect",
"low entropy",
"order",
"defects",
"growth",
"products",
"control",
"transformation",
"entropy",
"form",
"subtle effects",
"understanding",
"treatment",
"common form"
],
"name": "Fundamentals Of Dendritic Growth",
"pagination": "167-183",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1008913702"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-1-4613-0549-1_9"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-1-4613-0549-1_9",
"https://app.dimensions.ai/details/publication/pub.1008913702"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-06-01T22:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/chapter/chapter_195.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-1-4613-0549-1_9"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0549-1_9'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0549-1_9'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0549-1_9'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0549-1_9'
This table displays all metadata directly associated to this object as RDF triples.
109 TRIPLES
23 PREDICATES
70 URIs
63 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-1-4613-0549-1_9 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N090ff031496c4eb1a3a00ab90af1b8f6 |
4 | ″ | schema:datePublished | 1989 |
5 | ″ | schema:datePublishedReg | 1989-01-01 |
6 | ″ | schema:description | Dendritic growth is perhaps the most common form of solidification especially in metals and other systems that freeze with relatively low entropies of transformation. Dendritic or branched growth in alloys generates microsegregation as well as other internal defects in castings, ingots, and weldments. More subtle effects introduced by the complex dendritic microstructure in solidified materials include crystallographic texturing, hot cracking, suboptimal toughness, and reduced corrosion resistance. Moreover, the dendritic microstructure and its effects may be modified by subsequent heat treatments, but they are seldom fully “erased”. As such, the understanding and control of dendritic growth in solidification processing is crucial in order to achieve specific material properties in final products. |
7 | ″ | schema:editor | N3c6aa02e06224d98ab731a64e5acbc10 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N9fb59632754c4d3482941389ee216943 |
12 | ″ | schema:keywords | alloy |
13 | ″ | ″ | branched growth |
14 | ″ | ″ | casting |
15 | ″ | ″ | common form |
16 | ″ | ″ | control |
17 | ″ | ″ | corrosion resistance |
18 | ″ | ″ | cracking |
19 | ″ | ″ | crystallographic texturing |
20 | ″ | ″ | defects |
21 | ″ | ″ | dendritic growth |
22 | ″ | ″ | dendritic microstructure |
23 | ″ | ″ | effect |
24 | ″ | ″ | entropy |
25 | ″ | ″ | final product |
26 | ″ | ″ | form |
27 | ″ | ″ | fundamentals |
28 | ″ | ″ | growth |
29 | ″ | ″ | heat treatment |
30 | ″ | ″ | hot cracking |
31 | ″ | ″ | ingots |
32 | ″ | ″ | internal defects |
33 | ″ | ″ | low entropy |
34 | ″ | ″ | material properties |
35 | ″ | ″ | materials |
36 | ″ | ″ | metals |
37 | ″ | ″ | microsegregation |
38 | ″ | ″ | microstructure |
39 | ″ | ″ | order |
40 | ″ | ″ | processing |
41 | ″ | ″ | products |
42 | ″ | ″ | properties |
43 | ″ | ″ | resistance |
44 | ″ | ″ | solidification |
45 | ″ | ″ | solidification processing |
46 | ″ | ″ | specific material properties |
47 | ″ | ″ | subsequent heat treatment |
48 | ″ | ″ | subtle effects |
49 | ″ | ″ | system |
50 | ″ | ″ | texturing |
51 | ″ | ″ | toughness |
52 | ″ | ″ | transformation |
53 | ″ | ″ | treatment |
54 | ″ | ″ | understanding |
55 | ″ | ″ | weldments |
56 | ″ | schema:name | Fundamentals Of Dendritic Growth |
57 | ″ | schema:pagination | 167-183 |
58 | ″ | schema:productId | N06aaa28759cc4fae850e5a7c4fc1f21f |
59 | ″ | ″ | N224c50faa0b940818a8d03ac36724a60 |
60 | ″ | schema:publisher | Ncb7b9cef1d684853aff17ad3bd630cae |
61 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1008913702 |
62 | ″ | ″ | https://doi.org/10.1007/978-1-4613-0549-1_9 |
63 | ″ | schema:sdDatePublished | 2022-06-01T22:29 |
64 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
65 | ″ | schema:sdPublisher | N51dcc61948e44bc59dacf5315c319e76 |
66 | ″ | schema:url | https://doi.org/10.1007/978-1-4613-0549-1_9 |
67 | ″ | sgo:license | sg:explorer/license/ |
68 | ″ | sgo:sdDataset | chapters |
69 | ″ | rdf:type | schema:Chapter |
70 | N06aaa28759cc4fae850e5a7c4fc1f21f | schema:name | doi |
71 | ″ | schema:value | 10.1007/978-1-4613-0549-1_9 |
72 | ″ | rdf:type | schema:PropertyValue |
73 | N090ff031496c4eb1a3a00ab90af1b8f6 | rdf:first | sg:person.010720014261.43 |
74 | ″ | rdf:rest | rdf:nil |
75 | N224c50faa0b940818a8d03ac36724a60 | schema:name | dimensions_id |
76 | ″ | schema:value | pub.1008913702 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | N27be74f951254fa0b1d9eed1c36a482f | schema:familyName | Arend |
79 | ″ | schema:givenName | H. |
80 | ″ | rdf:type | schema:Person |
81 | N3c6aa02e06224d98ab731a64e5acbc10 | rdf:first | N27be74f951254fa0b1d9eed1c36a482f |
82 | ″ | rdf:rest | N9418105551b546028a87f48776c91ff0 |
83 | N51dcc61948e44bc59dacf5315c319e76 | schema:name | Springer Nature - SN SciGraph project |
84 | ″ | rdf:type | schema:Organization |
85 | N6e31d34d444840a2a23fba20c8e7deaa | schema:familyName | Hulliger |
86 | ″ | schema:givenName | J. |
87 | ″ | rdf:type | schema:Person |
88 | N9418105551b546028a87f48776c91ff0 | rdf:first | N6e31d34d444840a2a23fba20c8e7deaa |
89 | ″ | rdf:rest | rdf:nil |
90 | N9fb59632754c4d3482941389ee216943 | schema:isbn | 978-1-4612-7861-0 |
91 | ″ | ″ | 978-1-4613-0549-1 |
92 | ″ | schema:name | Crystal Growth in Science and Technology |
93 | ″ | rdf:type | schema:Book |
94 | Ncb7b9cef1d684853aff17ad3bd630cae | schema:name | Springer Nature |
95 | ″ | rdf:type | schema:Organisation |
96 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
97 | ″ | schema:name | Engineering |
98 | ″ | rdf:type | schema:DefinedTerm |
99 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Materials Engineering |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | sg:person.010720014261.43 | schema:affiliation | grid-institutes:grid.33647.35 |
103 | ″ | schema:familyName | Glicksman |
104 | ″ | schema:givenName | M. E. |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010720014261.43 |
106 | ″ | rdf:type | schema:Person |
107 | grid-institutes:grid.33647.35 | schema:alternateName | Materials Engineering Department, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA |
108 | ″ | schema:name | Materials Engineering Department, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA |
109 | ″ | rdf:type | schema:Organization |