The Desarguesian Plane of Order Thirteen View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

M. Giulietti , J. W. P. Hirschfeld , G. Korchmáros

ABSTRACT

The algebraic curve associated to an arc in PG(2, q), with q odd, is examined using both properties of the curve itself as well as properties of the arc. The key case of (q − 1)-arcs means that the behaviour of the associated sextic curves needs to be studied. The case of PG(2, 13) is examined in detail. There is a geometric bijection between 12-arcs and their duals. The latter lead to optimal sextic curves; the former lead to sextics whose set of rational points make them ‘look like’ quartics. More... »

PAGES

159-170

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4613-0283-4_10

DOI

http://dx.doi.org/10.1007/978-1-4613-0283-4_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043834640


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica, Universit\u00e0 di Perugia, Perugia, Italy", 
          "id": "http://www.grid.ac/institutes/grid.9027.c", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 di Perugia, Perugia, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giulietti", 
        "givenName": "M.", 
        "id": "sg:person.014360701343.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360701343.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematical Sciences, University of Sussex, BN1 9QH, Brighton, UK", 
          "id": "http://www.grid.ac/institutes/grid.12082.39", 
          "name": [
            "School of Mathematical Sciences, University of Sussex, BN1 9QH, Brighton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirschfeld", 
        "givenName": "J. W. P.", 
        "id": "sg:person.012124570705.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dipartimento di Matematica, Universit\u00e0 della Basilicata, 85100, Potenza, Italy", 
          "id": "http://www.grid.ac/institutes/grid.7367.5", 
          "name": [
            "Dipartimento di Matematica, Universit\u00e0 della Basilicata, 85100, Potenza, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korchm\u00e1ros", 
        "givenName": "G.", 
        "id": "sg:person.015156261743.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015156261743.39"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "The algebraic curve associated to an arc in PG(2, q), with q odd, is examined using both properties of the curve itself as well as properties of the arc. The key case of (q \u2212 1)-arcs means that the behaviour of the associated sextic curves needs to be studied. The case of PG(2, 13) is examined in detail. There is a geometric bijection between 12-arcs and their duals. The latter lead to optimal sextic curves; the former lead to sextics whose set of rational points make them \u2018look like\u2019 quartics.", 
    "editor": [
      {
        "familyName": "Blokhuis", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hirschfeld", 
        "givenName": "J. W. P.", 
        "type": "Person"
      }, 
      {
        "familyName": "Jungnickel", 
        "givenName": "D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Thas", 
        "givenName": "J. A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4613-0283-4_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4613-7977-5", 
        "978-1-4613-0283-4"
      ], 
      "name": "Finite Geometries", 
      "type": "Book"
    }, 
    "keywords": [
      "sextic curve", 
      "algebraic curves", 
      "rational points", 
      "geometric bijections", 
      "latter lead", 
      "Desarguesian planes", 
      "former leads", 
      "bijection", 
      "dual", 
      "quartics", 
      "sextics", 
      "set", 
      "curves", 
      "key cases", 
      "properties", 
      "cases", 
      "point", 
      "arc", 
      "detail", 
      "plane", 
      "behavior", 
      "lead", 
      "odds", 
      "Thirteen", 
      "order thirteen", 
      "optimal sextic curves"
    ], 
    "name": "The Desarguesian Plane of Order Thirteen", 
    "pagination": "159-170", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043834640"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4613-0283-4_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4613-0283-4_10", 
      "https://app.dimensions.ai/details/publication/pub.1043834640"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_362.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4613-0283-4_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0283-4_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0283-4_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0283-4_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4613-0283-4_10'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      23 PREDICATES      52 URIs      45 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4613-0283-4_10 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na155cf842da1428b914ea2e99dca2582
4 schema:datePublished 2001
5 schema:datePublishedReg 2001-01-01
6 schema:description The algebraic curve associated to an arc in PG(2, q), with q odd, is examined using both properties of the curve itself as well as properties of the arc. The key case of (q − 1)-arcs means that the behaviour of the associated sextic curves needs to be studied. The case of PG(2, 13) is examined in detail. There is a geometric bijection between 12-arcs and their duals. The latter lead to optimal sextic curves; the former lead to sextics whose set of rational points make them ‘look like’ quartics.
7 schema:editor N74a1972259ac4a6daf584b81b779f7c4
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nccbea88c4ba944668b0c74f6924dabb7
12 schema:keywords Desarguesian planes
13 Thirteen
14 algebraic curves
15 arc
16 behavior
17 bijection
18 cases
19 curves
20 detail
21 dual
22 former leads
23 geometric bijections
24 key cases
25 latter lead
26 lead
27 odds
28 optimal sextic curves
29 order thirteen
30 plane
31 point
32 properties
33 quartics
34 rational points
35 set
36 sextic curve
37 sextics
38 schema:name The Desarguesian Plane of Order Thirteen
39 schema:pagination 159-170
40 schema:productId N3f7e4026889a4dbc9f3092811bec149d
41 Ncc7ffb59dcd94988a73baa8ff83ee948
42 schema:publisher N17901e048e7a474986060932c534b6ee
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043834640
44 https://doi.org/10.1007/978-1-4613-0283-4_10
45 schema:sdDatePublished 2022-01-01T19:20
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N2b2be9bc58ee42b0b122f97b69f50d1d
48 schema:url https://doi.org/10.1007/978-1-4613-0283-4_10
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N01d72749cdb742dea35e6899f441b428 rdf:first sg:person.015156261743.39
53 rdf:rest rdf:nil
54 N17901e048e7a474986060932c534b6ee schema:name Springer Nature
55 rdf:type schema:Organisation
56 N28c5268a1a0b444ea92cc7879b24631e schema:familyName Thas
57 schema:givenName J. A.
58 rdf:type schema:Person
59 N2b2be9bc58ee42b0b122f97b69f50d1d schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N3698afef203d4c0bb58fe599e5ea7e0b schema:familyName Hirschfeld
62 schema:givenName J. W. P.
63 rdf:type schema:Person
64 N3f7e4026889a4dbc9f3092811bec149d schema:name doi
65 schema:value 10.1007/978-1-4613-0283-4_10
66 rdf:type schema:PropertyValue
67 N45fb46ae53b34432959f4d5b537efa76 schema:familyName Blokhuis
68 schema:givenName A.
69 rdf:type schema:Person
70 N6099ecb0d66940dfb7c4625552eaaf50 rdf:first sg:person.012124570705.64
71 rdf:rest N01d72749cdb742dea35e6899f441b428
72 N692b0d6688444574b2120c8190863dc0 rdf:first N28c5268a1a0b444ea92cc7879b24631e
73 rdf:rest rdf:nil
74 N74a1972259ac4a6daf584b81b779f7c4 rdf:first N45fb46ae53b34432959f4d5b537efa76
75 rdf:rest Nccc99612220244d9853832fa68cb1d1b
76 Na155cf842da1428b914ea2e99dca2582 rdf:first sg:person.014360701343.62
77 rdf:rest N6099ecb0d66940dfb7c4625552eaaf50
78 Na3abff570b9949deb8bfabcfda0da330 rdf:first Nb1120392bcb64c9c8ff131a61b7b56c2
79 rdf:rest N692b0d6688444574b2120c8190863dc0
80 Nb1120392bcb64c9c8ff131a61b7b56c2 schema:familyName Jungnickel
81 schema:givenName D.
82 rdf:type schema:Person
83 Ncc7ffb59dcd94988a73baa8ff83ee948 schema:name dimensions_id
84 schema:value pub.1043834640
85 rdf:type schema:PropertyValue
86 Nccbea88c4ba944668b0c74f6924dabb7 schema:isbn 978-1-4613-0283-4
87 978-1-4613-7977-5
88 schema:name Finite Geometries
89 rdf:type schema:Book
90 Nccc99612220244d9853832fa68cb1d1b rdf:first N3698afef203d4c0bb58fe599e5ea7e0b
91 rdf:rest Na3abff570b9949deb8bfabcfda0da330
92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
93 schema:name Mathematical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
96 schema:name Pure Mathematics
97 rdf:type schema:DefinedTerm
98 sg:person.012124570705.64 schema:affiliation grid-institutes:grid.12082.39
99 schema:familyName Hirschfeld
100 schema:givenName J. W. P.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012124570705.64
102 rdf:type schema:Person
103 sg:person.014360701343.62 schema:affiliation grid-institutes:grid.9027.c
104 schema:familyName Giulietti
105 schema:givenName M.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360701343.62
107 rdf:type schema:Person
108 sg:person.015156261743.39 schema:affiliation grid-institutes:grid.7367.5
109 schema:familyName Korchmáros
110 schema:givenName G.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015156261743.39
112 rdf:type schema:Person
113 grid-institutes:grid.12082.39 schema:alternateName School of Mathematical Sciences, University of Sussex, BN1 9QH, Brighton, UK
114 schema:name School of Mathematical Sciences, University of Sussex, BN1 9QH, Brighton, UK
115 rdf:type schema:Organization
116 grid-institutes:grid.7367.5 schema:alternateName Dipartimento di Matematica, Università della Basilicata, 85100, Potenza, Italy
117 schema:name Dipartimento di Matematica, Università della Basilicata, 85100, Potenza, Italy
118 rdf:type schema:Organization
119 grid-institutes:grid.9027.c schema:alternateName Dipartimento di Matematica, Università di Perugia, Perugia, Italy
120 schema:name Dipartimento di Matematica, Università di Perugia, Perugia, Italy
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...