Nonlinear and Linear Bottom Interaction Effects in Shallow Water View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1978

AUTHORS

O. Shemdin , K. Hasselmann , S. V. Hsiao , K. Herterich

ABSTRACT

Spectral wave transformation in shallow water is investigated by examining nonlinear and linear bottom interaction effects. The effect of nonlinear wave-wave interaction in shallow water is investigated by including the depth dependent dispersion relationship in the nonlinear calculations. Dissipative mechanisms examined are bottom friction, percolation within the sand layer, and wave motion in the mud layer induced by hydrodynamic forces acting at the mud line. Comparisons with observations suggest that bottom motion can be one order of magnitude more pronounced than friction or percolation when soft mud occupies the top layer such as found in the Gulf of Mexico. In the North Sea (JONSWAP area) coarse sand with mean grain diameter ≥ 0.3 mm is found in the top sediment layer. Here swell energy dissipation can be explained by the linear percolation mechanism. When bottom sand is fine (mean grain diameter ≤ 0.4 mm), such as found offshore of Panama City and Marine-land, Florida, nonlinear bottom friction is found to explain swell dissipation adequately. A nonlinear bottom scattering mechanism was investigated by Long (1973) who found the effect to be possibly important in the JONSWAP area but required detailed directional wave measurements to derive conclusive results. This paper examines five different data sets on wave transformation in shallow water and offers explanations in terms of bottom interaction mechanisms. More... »

PAGES

347-372

Book

TITLE

Turbulent Fluxes Through the Sea Surface, Wave Dynamics, and Prediction

ISBN

978-1-4612-9808-3
978-1-4612-9806-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-9806-9_23

DOI

http://dx.doi.org/10.1007/978-1-4612-9806-9_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042601866


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0911", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Maritime Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jet Propulsion Laboratory-Caltech, USA", 
          "id": "http://www.grid.ac/institutes/grid.211367.0", 
          "name": [
            "Jet Propulsion Laboratory-Caltech, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shemdin", 
        "givenName": "O.", 
        "id": "sg:person.014624147041.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624147041.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasselmann", 
        "givenName": "K.", 
        "id": "sg:person.011507631147.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507631147.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jet Propulsion Laboratory-Caltech, USA", 
          "id": "http://www.grid.ac/institutes/grid.211367.0", 
          "name": [
            "Jet Propulsion Laboratory-Caltech, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsiao", 
        "givenName": "S. V.", 
        "id": "sg:person.011003163235.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011003163235.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Planck-Institut f\u00fcr Meteorologie, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max-Planck-Institut f\u00fcr Meteorologie, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herterich", 
        "givenName": "K.", 
        "id": "sg:person.014262515735.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014262515735.94"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1978", 
    "datePublishedReg": "1978-01-01", 
    "description": "Spectral wave transformation in shallow water is investigated by examining nonlinear and linear bottom interaction effects. The effect of nonlinear wave-wave interaction in shallow water is investigated by including the depth dependent dispersion relationship in the nonlinear calculations. Dissipative mechanisms examined are bottom friction, percolation within the sand layer, and wave motion in the mud layer induced by hydrodynamic forces acting at the mud line. Comparisons with observations suggest that bottom motion can be one order of magnitude more pronounced than friction or percolation when soft mud occupies the top layer such as found in the Gulf of Mexico. In the North Sea (JONSWAP area) coarse sand with mean grain diameter \u2265 0.3 mm is found in the top sediment layer. Here swell energy dissipation can be explained by the linear percolation mechanism. When bottom sand is fine (mean grain diameter \u2264 0.4 mm), such as found offshore of Panama City and Marine-land, Florida, nonlinear bottom friction is found to explain swell dissipation adequately. A nonlinear bottom scattering mechanism was investigated by Long (1973) who found the effect to be possibly important in the JONSWAP area but required detailed directional wave measurements to derive conclusive results. This paper examines five different data sets on wave transformation in shallow water and offers explanations in terms of bottom interaction mechanisms.", 
    "editor": [
      {
        "familyName": "Favre", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Hasselmann", 
        "givenName": "Klaus", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-9806-9_23", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-9808-3", 
        "978-1-4612-9806-9"
      ], 
      "name": "Turbulent Fluxes Through the Sea Surface, Wave Dynamics, and Prediction", 
      "type": "Book"
    }, 
    "keywords": [
      "bottom friction", 
      "wave transformation", 
      "nonlinear bottom friction", 
      "shallow water", 
      "nonlinear wave-wave interactions", 
      "mean grain diameter", 
      "directional wave measurements", 
      "wave-wave interactions", 
      "bottom motion", 
      "mud line", 
      "hydrodynamic forces", 
      "swell dissipation", 
      "wave motion", 
      "grain diameter", 
      "wave measurements", 
      "energy dissipation", 
      "top layer", 
      "sand layer", 
      "percolation mechanism", 
      "nonlinear calculations", 
      "friction", 
      "top sediment layer", 
      "mud layer", 
      "dispersion relationship", 
      "dissipative mechanisms", 
      "layer", 
      "orders of magnitude", 
      "coarse sand", 
      "dissipation", 
      "sediment layers", 
      "soft mud", 
      "interaction mechanism", 
      "sand", 
      "water", 
      "motion", 
      "bottom sand", 
      "scattering mechanism", 
      "Panama City", 
      "percolation", 
      "Gulf of Mexico", 
      "force", 
      "interaction effects", 
      "mud", 
      "diameter", 
      "measurements", 
      "effect", 
      "calculations", 
      "mechanism", 
      "transformation", 
      "magnitude", 
      "order", 
      "different data sets", 
      "results", 
      "comparison", 
      "terms", 
      "data sets", 
      "area", 
      "observations", 
      "Gulf", 
      "interaction", 
      "set", 
      "lines", 
      "city", 
      "conclusive results", 
      "Florida", 
      "Long", 
      "relationship", 
      "explanation", 
      "Mexico", 
      "paper"
    ], 
    "name": "Nonlinear and Linear Bottom Interaction Effects in Shallow Water", 
    "pagination": "347-372", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042601866"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-9806-9_23"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-9806-9_23", 
      "https://app.dimensions.ai/details/publication/pub.1042601866"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_407.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-1-4612-9806-9_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-9806-9_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-9806-9_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-9806-9_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-9806-9_23'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      22 PREDICATES      95 URIs      88 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-9806-9_23 schema:about anzsrc-for:09
2 anzsrc-for:0911
3 schema:author N71ae55c6e2bb404bac04eba507d6ec6f
4 schema:datePublished 1978
5 schema:datePublishedReg 1978-01-01
6 schema:description Spectral wave transformation in shallow water is investigated by examining nonlinear and linear bottom interaction effects. The effect of nonlinear wave-wave interaction in shallow water is investigated by including the depth dependent dispersion relationship in the nonlinear calculations. Dissipative mechanisms examined are bottom friction, percolation within the sand layer, and wave motion in the mud layer induced by hydrodynamic forces acting at the mud line. Comparisons with observations suggest that bottom motion can be one order of magnitude more pronounced than friction or percolation when soft mud occupies the top layer such as found in the Gulf of Mexico. In the North Sea (JONSWAP area) coarse sand with mean grain diameter ≥ 0.3 mm is found in the top sediment layer. Here swell energy dissipation can be explained by the linear percolation mechanism. When bottom sand is fine (mean grain diameter ≤ 0.4 mm), such as found offshore of Panama City and Marine-land, Florida, nonlinear bottom friction is found to explain swell dissipation adequately. A nonlinear bottom scattering mechanism was investigated by Long (1973) who found the effect to be possibly important in the JONSWAP area but required detailed directional wave measurements to derive conclusive results. This paper examines five different data sets on wave transformation in shallow water and offers explanations in terms of bottom interaction mechanisms.
7 schema:editor N2d097a399d5e457f954e5a4ef83b5c3e
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N92033177424d46578e420a9a993d8c7e
11 schema:keywords Florida
12 Gulf
13 Gulf of Mexico
14 Long
15 Mexico
16 Panama City
17 area
18 bottom friction
19 bottom motion
20 bottom sand
21 calculations
22 city
23 coarse sand
24 comparison
25 conclusive results
26 data sets
27 diameter
28 different data sets
29 directional wave measurements
30 dispersion relationship
31 dissipation
32 dissipative mechanisms
33 effect
34 energy dissipation
35 explanation
36 force
37 friction
38 grain diameter
39 hydrodynamic forces
40 interaction
41 interaction effects
42 interaction mechanism
43 layer
44 lines
45 magnitude
46 mean grain diameter
47 measurements
48 mechanism
49 motion
50 mud
51 mud layer
52 mud line
53 nonlinear bottom friction
54 nonlinear calculations
55 nonlinear wave-wave interactions
56 observations
57 order
58 orders of magnitude
59 paper
60 percolation
61 percolation mechanism
62 relationship
63 results
64 sand
65 sand layer
66 scattering mechanism
67 sediment layers
68 set
69 shallow water
70 soft mud
71 swell dissipation
72 terms
73 top layer
74 top sediment layer
75 transformation
76 water
77 wave measurements
78 wave motion
79 wave transformation
80 wave-wave interactions
81 schema:name Nonlinear and Linear Bottom Interaction Effects in Shallow Water
82 schema:pagination 347-372
83 schema:productId N9dfab5153a234721b4eaa6b17d92ee82
84 Nd3f7bf5742274afc997f96415feac736
85 schema:publisher N1da40e53744d4f69a8690a8584973a93
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042601866
87 https://doi.org/10.1007/978-1-4612-9806-9_23
88 schema:sdDatePublished 2022-12-01T06:53
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N0db71fc43c6044018e96c76c5e3ad476
91 schema:url https://doi.org/10.1007/978-1-4612-9806-9_23
92 sgo:license sg:explorer/license/
93 sgo:sdDataset chapters
94 rdf:type schema:Chapter
95 N0db71fc43c6044018e96c76c5e3ad476 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N1b23d977c6df4525873cbfc44fba9f72 schema:familyName Favre
98 schema:givenName A.
99 rdf:type schema:Person
100 N1da40e53744d4f69a8690a8584973a93 schema:name Springer Nature
101 rdf:type schema:Organisation
102 N2d097a399d5e457f954e5a4ef83b5c3e rdf:first N1b23d977c6df4525873cbfc44fba9f72
103 rdf:rest Nd10699749c2e4b64b6fccf96a13ce2b5
104 N71ae55c6e2bb404bac04eba507d6ec6f rdf:first sg:person.014624147041.78
105 rdf:rest Nb5cf6d73f27d4ed38427bbf43f43a161
106 N774dcd1eb33a4d68ae996eaeeedfc3a2 rdf:first sg:person.011003163235.32
107 rdf:rest Nae98afc73ef044e2bfa7fe784fc1dbc5
108 N92033177424d46578e420a9a993d8c7e schema:isbn 978-1-4612-9806-9
109 978-1-4612-9808-3
110 schema:name Turbulent Fluxes Through the Sea Surface, Wave Dynamics, and Prediction
111 rdf:type schema:Book
112 N9dfab5153a234721b4eaa6b17d92ee82 schema:name doi
113 schema:value 10.1007/978-1-4612-9806-9_23
114 rdf:type schema:PropertyValue
115 Nae98afc73ef044e2bfa7fe784fc1dbc5 rdf:first sg:person.014262515735.94
116 rdf:rest rdf:nil
117 Nb5cf6d73f27d4ed38427bbf43f43a161 rdf:first sg:person.011507631147.31
118 rdf:rest N774dcd1eb33a4d68ae996eaeeedfc3a2
119 Nc2cd68f375e6459291ac0fc00bb51a3a schema:familyName Hasselmann
120 schema:givenName Klaus
121 rdf:type schema:Person
122 Nd10699749c2e4b64b6fccf96a13ce2b5 rdf:first Nc2cd68f375e6459291ac0fc00bb51a3a
123 rdf:rest rdf:nil
124 Nd3f7bf5742274afc997f96415feac736 schema:name dimensions_id
125 schema:value pub.1042601866
126 rdf:type schema:PropertyValue
127 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
128 schema:name Engineering
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0911 schema:inDefinedTermSet anzsrc-for:
131 schema:name Maritime Engineering
132 rdf:type schema:DefinedTerm
133 sg:person.011003163235.32 schema:affiliation grid-institutes:grid.211367.0
134 schema:familyName Hsiao
135 schema:givenName S. V.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011003163235.32
137 rdf:type schema:Person
138 sg:person.011507631147.31 schema:affiliation grid-institutes:grid.450268.d
139 schema:familyName Hasselmann
140 schema:givenName K.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011507631147.31
142 rdf:type schema:Person
143 sg:person.014262515735.94 schema:affiliation grid-institutes:grid.450268.d
144 schema:familyName Herterich
145 schema:givenName K.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014262515735.94
147 rdf:type schema:Person
148 sg:person.014624147041.78 schema:affiliation grid-institutes:grid.211367.0
149 schema:familyName Shemdin
150 schema:givenName O.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014624147041.78
152 rdf:type schema:Person
153 grid-institutes:grid.211367.0 schema:alternateName Jet Propulsion Laboratory-Caltech, USA
154 schema:name Jet Propulsion Laboratory-Caltech, USA
155 rdf:type schema:Organization
156 grid-institutes:grid.450268.d schema:alternateName Max-Planck-Institut für Meteorologie, Germany
157 schema:name Max-Planck-Institut für Meteorologie, Germany
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...