Knowledge Based and Database Systems: Enhancements, Coupling or Integration? View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1986

AUTHORS

Micheal L. Brodie , John Mylopoulos

ABSTRACT

David Israel presented a position paper onn what he called a “moving target: knowledge bases and databases”. According to him, databases are simple knowledge bases; simple in that they only contain assertions in a canonical normal form and their expressive power is limited. Moreover, there is an implicit closed world assumption being made in the minds of their users. By contrast, knowledge bases are database, where one can express more kinds of things in a direct way. At the moment most knowledge bases are small. AI people should either learn the Database techniques for dealing with large amounts of data, or get people from that database side to transfer some of their techniques to the AI realm. The “revolutionary” approach suggested by John Mylopoulos involves the toughest job. More... »

PAGES

93-94

Book

TITLE

On Knowledge Base Management Systems

ISBN

978-1-4612-9383-5
978-1-4612-4980-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-4980-1_11

DOI

http://dx.doi.org/10.1007/978-1-4612-4980-1_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019590049


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Computer Corporation of America, 4 Cambridge Center, 02142\u00a0Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brodie", 
        "givenName": "Micheal L.", 
        "id": "sg:person.010270310075.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010270310075.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Department of Computer Science, University of Toronto, M5S IA4\u00a0Toronto, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mylopoulos", 
        "givenName": "John", 
        "id": "sg:person.014421421641.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421421641.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1986", 
    "datePublishedReg": "1986-01-01", 
    "description": "David Israel presented a position paper onn what he called a \u201cmoving target: knowledge bases and databases\u201d. According to him, databases are simple knowledge bases; simple in that they only contain assertions in a canonical normal form and their expressive power is limited. Moreover, there is an implicit closed world assumption being made in the minds of their users. By contrast, knowledge bases are database, where one can express more kinds of things in a direct way. At the moment most knowledge bases are small. AI people should either learn the Database techniques for dealing with large amounts of data, or get people from that database side to transfer some of their techniques to the AI realm. The \u201crevolutionary\u201d approach suggested by John Mylopoulos involves the toughest job.", 
    "editor": [
      {
        "familyName": "Brodie", 
        "givenName": "Micheal L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Mylopoulos", 
        "givenName": "John", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-4980-1_11", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4612-9383-5", 
        "978-1-4612-4980-1"
      ], 
      "name": "On Knowledge Base Management Systems", 
      "type": "Book"
    }, 
    "name": "Knowledge Based and Database Systems: Enhancements, Coupling or Integration?", 
    "pagination": "93-94", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-4980-1_11"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5d56d4014858eee4c523660fbe4d069efdc1ea8e39dbb46a2c60abbddaecd834"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019590049"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-4980-1_11", 
      "https://app.dimensions.ai/details/publication/pub.1019590049"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000033.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-1-4612-4980-1_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-4980-1_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-4980-1_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-4980-1_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-4980-1_11'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-4980-1_11 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nf2c5f8b3cf93421d9f21ddf1a00baa12
4 schema:datePublished 1986
5 schema:datePublishedReg 1986-01-01
6 schema:description David Israel presented a position paper onn what he called a “moving target: knowledge bases and databases”. According to him, databases are simple knowledge bases; simple in that they only contain assertions in a canonical normal form and their expressive power is limited. Moreover, there is an implicit closed world assumption being made in the minds of their users. By contrast, knowledge bases are database, where one can express more kinds of things in a direct way. At the moment most knowledge bases are small. AI people should either learn the Database techniques for dealing with large amounts of data, or get people from that database side to transfer some of their techniques to the AI realm. The “revolutionary” approach suggested by John Mylopoulos involves the toughest job.
7 schema:editor N02a94d9c0f744343ad97afb73419dea5
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3e2b9564b38140ea9290da38aed24f14
12 schema:name Knowledge Based and Database Systems: Enhancements, Coupling or Integration?
13 schema:pagination 93-94
14 schema:productId N6e611b30fc8a477081d79419669f3e07
15 N928b1eb924a649419a4b1a9b5b01b59a
16 Nbbdba22d0ccd4dbca71b80c56798cff2
17 schema:publisher Ne132369625834c90bb3bb7c2fe7be1e8
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019590049
19 https://doi.org/10.1007/978-1-4612-4980-1_11
20 schema:sdDatePublished 2019-04-15T13:14
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nd26df5e2b4c749ad8c78c1025921373f
23 schema:url http://link.springer.com/10.1007/978-1-4612-4980-1_11
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N02a94d9c0f744343ad97afb73419dea5 rdf:first N27d5c5a5b27e4299947d5c4f37a47933
28 rdf:rest N070724a24a4b437b9299a4762b30c41e
29 N070724a24a4b437b9299a4762b30c41e rdf:first N6befeda26beb4fd4aeae11770af32f15
30 rdf:rest rdf:nil
31 N27d5c5a5b27e4299947d5c4f37a47933 schema:familyName Brodie
32 schema:givenName Micheal L.
33 rdf:type schema:Person
34 N35f3d5a8d11849338dd78f4d6db4cb86 rdf:first sg:person.014421421641.65
35 rdf:rest rdf:nil
36 N3e2b9564b38140ea9290da38aed24f14 schema:isbn 978-1-4612-4980-1
37 978-1-4612-9383-5
38 schema:name On Knowledge Base Management Systems
39 rdf:type schema:Book
40 N6befeda26beb4fd4aeae11770af32f15 schema:familyName Mylopoulos
41 schema:givenName John
42 rdf:type schema:Person
43 N6e611b30fc8a477081d79419669f3e07 schema:name readcube_id
44 schema:value 5d56d4014858eee4c523660fbe4d069efdc1ea8e39dbb46a2c60abbddaecd834
45 rdf:type schema:PropertyValue
46 N928b1eb924a649419a4b1a9b5b01b59a schema:name dimensions_id
47 schema:value pub.1019590049
48 rdf:type schema:PropertyValue
49 Nbbdba22d0ccd4dbca71b80c56798cff2 schema:name doi
50 schema:value 10.1007/978-1-4612-4980-1_11
51 rdf:type schema:PropertyValue
52 Nd26df5e2b4c749ad8c78c1025921373f schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Ne132369625834c90bb3bb7c2fe7be1e8 schema:location New York, NY
55 schema:name Springer New York
56 rdf:type schema:Organisation
57 Nf2c5f8b3cf93421d9f21ddf1a00baa12 rdf:first sg:person.010270310075.81
58 rdf:rest N35f3d5a8d11849338dd78f4d6db4cb86
59 Nfa8fa82cded54917b0854fbd1d554af1 schema:name Computer Corporation of America, 4 Cambridge Center, 02142 Cambridge, MA, USA
60 rdf:type schema:Organization
61 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
62 schema:name Information and Computing Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
65 schema:name Information Systems
66 rdf:type schema:DefinedTerm
67 sg:person.010270310075.81 schema:affiliation Nfa8fa82cded54917b0854fbd1d554af1
68 schema:familyName Brodie
69 schema:givenName Micheal L.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010270310075.81
71 rdf:type schema:Person
72 sg:person.014421421641.65 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
73 schema:familyName Mylopoulos
74 schema:givenName John
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014421421641.65
76 rdf:type schema:Person
77 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
78 schema:name Department of Computer Science, University of Toronto, M5S IA4 Toronto, Ontario, Canada
79 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...