Regression Models and Life-Tables View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1992

AUTHORS

David R. Cox

ABSTRACT

The analysis of censored failure times is considered. It is assumed that on each individual arc available values of one or more explanatory variables. The hazard function (age-specific failure rate) is taken to be a function of the explanatory variables and unknown regression coefficients multiplied by an arbitrary and unknown function of time. A conditional likelihood is obtained, leading to inferences about the unknown regression coefficients. Some generalizations are outlined. More... »

PAGES

527-541

Book

TITLE

Breakthroughs in Statistics

ISBN

978-0-387-94039-7
978-1-4612-4380-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-1-4612-4380-9_37

DOI

http://dx.doi.org/10.1007/978-1-4612-4380-9_37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007048162


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Imperial College, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cox", 
        "givenName": "David R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/biomet/51.1-2.175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/52.1-2.203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/57.3.579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tr.1968.5217501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061780900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177728170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177729080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064401616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2282717", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069859849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3001616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070163897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3001624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070163904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3001865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070164074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/22.4.719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075910802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081436209", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2344317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103088743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2344317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103088743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1959.tb00332.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110457230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1959.tb00332.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110457230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1959.tb00349.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110457247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1959.tb00349.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110457247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1964.tb00544.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110457442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1964.tb00544.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110457442"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1992", 
    "datePublishedReg": "1992-01-01", 
    "description": "The analysis of censored failure times is considered. It is assumed that on each individual arc available values of one or more explanatory variables. The hazard function (age-specific failure rate) is taken to be a function of the explanatory variables and unknown regression coefficients multiplied by an arbitrary and unknown function of time. A conditional likelihood is obtained, leading to inferences about the unknown regression coefficients. Some generalizations are outlined.", 
    "editor": [
      {
        "familyName": "Kotz", 
        "givenName": "Samuel", 
        "type": "Person"
      }, 
      {
        "familyName": "Johnson", 
        "givenName": "Norman L.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-1-4612-4380-9_37", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-94039-7", 
        "978-1-4612-4380-9"
      ], 
      "name": "Breakthroughs in Statistics", 
      "type": "Book"
    }, 
    "name": "Regression Models and Life-Tables", 
    "pagination": "527-541", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007048162"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-1-4612-4380-9_37"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21930685fdab673f212a3662d46f4afa2519bebea41dfcb55d60ade05beed580"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-1-4612-4380-9_37", 
      "https://app.dimensions.ai/details/publication/pub.1007048162"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91441_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-1-4612-4380-9_37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-4380-9_37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-4380-9_37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-4380-9_37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-1-4612-4380-9_37'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      23 PREDICATES      43 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-1-4612-4380-9_37 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N2695ac1950ff47289ad586ac6cfff41b
4 schema:citation https://app.dimensions.ai/details/publication/pub.1081436209
5 https://doi.org/10.1093/biomet/51.1-2.175
6 https://doi.org/10.1093/biomet/52.1-2.203
7 https://doi.org/10.1093/biomet/57.3.579
8 https://doi.org/10.1093/jnci/22.4.719
9 https://doi.org/10.1109/tr.1968.5217501
10 https://doi.org/10.1111/j.2517-6161.1959.tb00332.x
11 https://doi.org/10.1111/j.2517-6161.1959.tb00349.x
12 https://doi.org/10.1111/j.2517-6161.1964.tb00544.x
13 https://doi.org/10.1214/aoms/1177728170
14 https://doi.org/10.1214/aoms/1177729080
15 https://doi.org/10.2307/2282717
16 https://doi.org/10.2307/2344317
17 https://doi.org/10.2307/3001616
18 https://doi.org/10.2307/3001624
19 https://doi.org/10.2307/3001865
20 schema:datePublished 1992
21 schema:datePublishedReg 1992-01-01
22 schema:description The analysis of censored failure times is considered. It is assumed that on each individual arc available values of one or more explanatory variables. The hazard function (age-specific failure rate) is taken to be a function of the explanatory variables and unknown regression coefficients multiplied by an arbitrary and unknown function of time. A conditional likelihood is obtained, leading to inferences about the unknown regression coefficients. Some generalizations are outlined.
23 schema:editor N0b5ff6987aa0462a830807eeb3180e26
24 schema:genre chapter
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N696973516d7c43dcaafc6edf2f729d25
28 schema:name Regression Models and Life-Tables
29 schema:pagination 527-541
30 schema:productId N7574ced7380e4573b7a892c457abc414
31 N833012cfc8fe48a4821936bf8f2f0b6e
32 N893df4ea150e457cbde6759dd7fc8c90
33 schema:publisher N2279b0e9d6ee41b5998c40a9ec410b2d
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007048162
35 https://doi.org/10.1007/978-1-4612-4380-9_37
36 schema:sdDatePublished 2019-04-16T09:44
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nd3f22e3c1e4c43cc947d89bef461dccc
39 schema:url https://link.springer.com/10.1007%2F978-1-4612-4380-9_37
40 sgo:license sg:explorer/license/
41 sgo:sdDataset chapters
42 rdf:type schema:Chapter
43 N088e8381db6b48b389b90144ad02c718 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
44 schema:familyName Cox
45 schema:givenName David R.
46 rdf:type schema:Person
47 N0b5ff6987aa0462a830807eeb3180e26 rdf:first N52f28aded2274cbcb3c5dc462062116d
48 rdf:rest N63fb692d7ea5429794f9077936978e43
49 N2279b0e9d6ee41b5998c40a9ec410b2d schema:location New York, NY
50 schema:name Springer New York
51 rdf:type schema:Organisation
52 N2695ac1950ff47289ad586ac6cfff41b rdf:first N088e8381db6b48b389b90144ad02c718
53 rdf:rest rdf:nil
54 N52f28aded2274cbcb3c5dc462062116d schema:familyName Kotz
55 schema:givenName Samuel
56 rdf:type schema:Person
57 N63fb692d7ea5429794f9077936978e43 rdf:first Ne9deb73d8cae45599f18f9f82b39e0dd
58 rdf:rest rdf:nil
59 N696973516d7c43dcaafc6edf2f729d25 schema:isbn 978-0-387-94039-7
60 978-1-4612-4380-9
61 schema:name Breakthroughs in Statistics
62 rdf:type schema:Book
63 N7574ced7380e4573b7a892c457abc414 schema:name doi
64 schema:value 10.1007/978-1-4612-4380-9_37
65 rdf:type schema:PropertyValue
66 N833012cfc8fe48a4821936bf8f2f0b6e schema:name readcube_id
67 schema:value 21930685fdab673f212a3662d46f4afa2519bebea41dfcb55d60ade05beed580
68 rdf:type schema:PropertyValue
69 N893df4ea150e457cbde6759dd7fc8c90 schema:name dimensions_id
70 schema:value pub.1007048162
71 rdf:type schema:PropertyValue
72 Nd3f22e3c1e4c43cc947d89bef461dccc schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Ne9deb73d8cae45599f18f9f82b39e0dd schema:familyName Johnson
75 schema:givenName Norman L.
76 rdf:type schema:Person
77 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
78 schema:name Medical and Health Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
81 schema:name Neurosciences
82 rdf:type schema:DefinedTerm
83 https://app.dimensions.ai/details/publication/pub.1081436209 schema:CreativeWork
84 https://doi.org/10.1093/biomet/51.1-2.175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417348
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1093/biomet/52.1-2.203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417434
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1093/biomet/57.3.579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417950
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1093/jnci/22.4.719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075910802
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1109/tr.1968.5217501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061780900
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1111/j.2517-6161.1959.tb00332.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110457230
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1111/j.2517-6161.1959.tb00349.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110457247
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1111/j.2517-6161.1964.tb00544.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110457442
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1214/aoms/1177728170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401306
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1214/aoms/1177729080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064401616
103 rdf:type schema:CreativeWork
104 https://doi.org/10.2307/2282717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069859849
105 rdf:type schema:CreativeWork
106 https://doi.org/10.2307/2344317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103088743
107 rdf:type schema:CreativeWork
108 https://doi.org/10.2307/3001616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070163897
109 rdf:type schema:CreativeWork
110 https://doi.org/10.2307/3001624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070163904
111 rdf:type schema:CreativeWork
112 https://doi.org/10.2307/3001865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070164074
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
115 schema:name Imperial College, London, UK
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...